Archive for June, 2010
Allele Custom Services for Drug Screening Companies
Many target discovery and validation programs can benefit from RNA interference, fluorescent proteins, stem cells, and viral delivery systems. However, applications of these technologies require special reagents and laboratory know-how. Even when available, many generic reagent kits are not tailored for your particular needs in screening or validation.
At Allele, we accelerate your discovery efforts with custom RNAi screening, fluorescence based assays, and cell model development services.
1) Our RNAi platform, based on our patented shRNA/miRNA technologies, use DNA linear template, plasmid, lentivirus, retrovirus, or baculovirus vectors that prompt cells to endogenously express RNAi. As a result, our screens offer advantages over synthetic siRNAs:
• Higher levels of consistency
• Greater delivery and gene silencing efficiencies
• Accessibility to difficult-to-transfect cells, including primary cells
• Potential for inducible RNAi expression
• More persistent silencing with shRNA under Allele’s own IP–you may not need to license siRNA patents!
2) Fluorescent proteins (FPs), which can span the entire visual spectrum, have become some of the most widely used genetically encoded tags. Genes encoding FPs alone or as fusions to a protein of interest may be introduced to cells by a number of different methods, including simple plasmid transfection or viral transduction. Allele Biotech is one of a few companies that develop and improve FPs through fundamental research. We have so far achieved:
• The brightest cyan and green FPs, true monomers for minimum artifact or cytotoxicity
• The brightest yellow and red FPs from lancelet, only FPs from vertebrate
• mTFP1 as the best FRET donor by 3 independent reports
• Photoconvertible FPs for super imaging or kinetic labeling
• Delivery on plasmid, retrovirus, lentivirus, baculovirus vectors
3) As a major advancement in the stem cell field, it has recently been shown that mouse and human differentiated cells may be reprogrammed into stem-like, pluripotent cells by the introduction of defined transcription factors. These induced stem cells (iPSCs) provide unprecedented resources of cells of different differentiation stages for functional testing and drug screening. Allele Biotech develops and provides state-of-the-art reagents in convenient forms for iPSC production
• iPS factors carried on lentivirus, retrovirus, baculovirus for different cell types
• Availability in combination with fluorescent proteins under own IP, and drug resistant genes
• 4-in-1 or 2-in-1 effective use of iPS factors on one viral vector
• Feeder cells of human origin expressing factors essential for stem cell culturing
4) Introduction of protein factors, miRNA, promoter-reporter, and virtually any other genetic element of interest via the most efficient viral packaging systems.
• Introducing protein-FP fusion, promoter-FP reporter, photoactivatable factors for cell-based assays
• Introducing critical factors for cell immortalization
• Episomal or integrated expression using baculoviral vectors
• High throughput, systematic expression of whole class of molecules in any type of cell
• High titer viral packaging at low cost for delivery to animal tissues
In addition, the Allele team can provide custom-designed assays that can be used for assaying enzyme activities in almost any pathway, such as the EGF pathway, TNF response/apoptosis pathway, nuclear receptors, etc. We utilize technically advanced methods to provide our partners with advantages over alternative methods or other services.
New Product of the Week 06-28-10 to 07-03-10: Eco-friendly mammalian tissue culture plates, 40% less plastic to the environment, 40% less cost to your budget, contact our sales rep today for quotes and details.
Promotion of the Week 06-28-10 to 07-03-10: Oct3/4 iPS lentivirus with RFP as marker, new to the market, this week only all kits containing Oct3/4-RFP same price as the original, non-RFP versions, save ~$50!
Brightest Ever Fluorescent Protein
LanYFP, identified from lancelet (also known as amphioxus, e.g. Branchiostoma floridae), has been found to have the following properties:
Excitation 513nm
Emission 524nm
Quantum yield 0.95
Extinction coefficient 150,000
pKa ~3.5
Salt insensitive 0-500mM NaCl
LanYFP has a brightness of 143! For comparison, the brightness of the previously known brightest FPs is 95 for tdTomato, and 34 for commonly used EGFP.
Allele already has been exclusively providing the brightest cyan FP in mTFP1 (brightness of 54); and the brightest green FP in mWasabi (brightness of 56). The confirmation of LanYFP as the brightest ever FP is a major milestone of Allele’s research and development efforts in the fluorescent protein field. We are currently monomerizing LanYFP and another lancelet protein, LanRFP. Once completed, the new proteins should definitely be the FPs of choice for in vivo imaging and FRET with unprecedented utilities.
Promotion of the week 062010-061610: Validated Rex1 Promoter Reporter Lentiviral Particles-1 Vial for $149.00 (ABP-SC-RREX2R1). Save $59 if place an order this week! http://www.allelebiotech.com/shopcart/index.php?c=200&sc=34
New product of the week, recombinant mTFP1, mWasabi, LanYFP, LanRFP, $159 for 125 ug, compare price for 100ug vs 125ug in other companies’ offers, you will know that you are getting a good deal from Allele.
Developing Cell-Based Assays
Cascaded protein interactions form the foundation of all signaling pathways, many of which are involved in multiple human diseases. These interactions are sensitively and precisely regulated by various post-translation modifications such as phosphorylation, acetylation, ubiquitination, etc. Many action points of the protein modifications have been targeted during drug development. From a survey we have conducted on assays aimed at these targets, we found that most of the assays are based on the enzymatic reactions, e.g. phosphorylation-specific ELISA, and chemically modified FRET, which require pre-assembled reagent kits which are hard to apply to different targets and different cell models.
Fluorescent Protein based FRET might be the optimal choice to develop a versatile cell-based assay. Since signaling pathways rely on hierarchical protein-protein interactions, the most direct and precise way to study cell signaling pathways would be to detect the interactions between a target protein and its immediate downstream protein. Furthermore, different upstream signals can activate the same set of target proteins in different post-modification patterns, resulting in specific activation of downstream responding factors. These signal flows may be individually monitored by using FRET based assay redesigned and validated for each downstream pathway.
Allele’s scientists can develop cell-based assays with in-depth understanding of protein interactions within the context of human genome, such as the SH2, SH3 and PTB domains in tyrosine kinase signaling, the F-box, BTB-box, SOCS, WDR, and LRR domains in the ubiquitin proteasome system, etc. Additionally, Allele’s cell-based assays can be carried on world’s most powerful lentivirus packaging platform, suitable for virtually all different cell lines and primary cells.
New Product of the Week 061410 to 062010: Rat monoclonal antibody against GFP, strong signal for GFP labeling
Promotion of the Week 061410 to 062010: Mouse LIF-bFGF expressing feeder cells for stem cell culture (ABP-SC-BLIFM05), one vial free to go with any iPS lentivirus/retrovirus kit.
Introducing EcoCulture Tissue Culture Plates
Allele Biotech is scoring one for the environment again. Our brand new EcoCulture Tissue Culture Dishes are designed with up to 40% less plastic than other brands, helping us attain our goal to minimize the menacing need for plastic consumables in the lab. Our high tech, environmentally friendly EcoCulture Dishes demonstrate much better imaging capabilities because of the thin lay of plastic at the bottom, and stronger physical strength even using only 60% plastic due to their patented design, aiding the environment by reducing energy consumption and decreasing the amount of plastic that will end up on our planet. An all inclusive environmental effort surrounds this brand new product line with our added commitment of donating 1% of profits from EcoCulture sales to an environmental aid organization (to be determined).
EcoCulture Dishes were a natural progression for Allele Biotech product design. For a long time our operations have included environmentally friendly endeavors; our recycling program which we conduct at a cost to us, our Box Swap program designed to reuse and reduce the need for Styrofoam, and our packaging methods that emphasize minimal use of materials as a long time company policy have all been executed in the interest of the environment. We have striven toward the belief that you do not have to sacrifice the planet in the name of research and the launch of our EcoCulture Dishes aims to spread our altruistic philosophies to our customers and partners in research!
Brochures and catalogue numbers of these products will become listed on our webpages shortly. Visit us often or follow us on Facebook, twitter, or myspace for updates on all our weekly promotions and new products of the week.
Promotion of the week: Falcon 96-well tissue culture grade plates giveaway–buy 1 bottle of our top quality FBS (validated for both mammalian and insect cells), receive 3 packages of 5×96 Falcon 3075 flat bottom tissue culture plates for free!
Promotion of the week 060710-06310: iPS factors with fluorescent protein tracers on ready-to-use high titer lentivirus, currently available-Oct3/4 with RFP and c-Myc with RFP, more to be added.
Introducing Product-on-Demand Biological Research Reagents
The general order of operations in the bioreagent industry begins with a developer observing or forecasting a need and developing a product. The supplier then supplies that product to customers by showing that the product will suit their existing needs. An alternative order in our industry is after a new discovery in the form an enzyme reaction mechanism, affinity binding, or biological system is made in lab, someone realizes that discovery could be made into a product. If the idea is picked up by a commercial R&D team, the underlining mechanisms of the discovery are then exploited for particular use and reagents or kits will be built around it. The new products are introduced to the market by convincing potential users that they will make their research better, cheaper, or faster.
From a supplier’s point of view, if the current processes for developing new products have been working, what’s the incentive to change? From a researcher’s point of view, well, do they have any other choices? If something is not commercially available, someone will just make it in the lab if they need it. Some of us still remember the days when a graduate student needed to make his own restriction enzyme because NEB didn’t sell it. However, there is a disconnect between how much new knowledge is being gained every single day in tens of thousands of labs and how small a portion of that knowledge pool is being turned into more powerful tools to make the next round of research easier and more cost-effective. For instance, when an important gene’s promoter is recently defined by a functional study in 293T cells, how soon do you expect to test the signals that influence transcription from that promoter in the primary cells you are working on? Wouldn’t it be nice if you could simply buy a vector that will express a promoter-driven reporter ready to be introduced into the primary cells in your lab instead of having a graduate student design, construct, learn and try to make a lentiviral vector in the next few months?
And yes, there is the route called custom projects provided by a few bioreagent companies. The prices are often inhibiting for the reasons that the price needs to cover for labor on industry pay scale, materials, indirect, and profit. Additionally, since the service provider does not take ownership of the product, the work of researching the relevant pathways and making construct designs is left to the user.
There is a better way. A company can plan product groups, lines, and packages based solely on the demonstrated importance of a system such as signal pathway or a family of molecules like miRNA. The plan can project to use the most advanced technologies, even accompanied with full product descriptions and vector maps. However, it would be a great waste of money and material if nobody would ever need it, right? One way of dealing with the initial cost is that we make the first kit upon the first order. The customer that places the first order of a new product will get a deep discount off the shelf-product price on what used to be a custom project. They might even have the opportunity to provide input on the product design prior to production. From a supplier side, we will benefit by having an opportunity to initiate a new product without major investment, which in turn would keep our overall prices low for such innovative and advanced products.
This model should help speed up the commercial application of any new biological findings, lower the cost and price of bioreagent products, and encourage interaction between researchers who normally do not work with each other to produce better products for increasing the efficiency of research.
Discount of the week 060110-060710: Any virus packaging project initiated this week gets additional 10% discount that can be used with first time discount and other pricing advantages. http://www.allelebiotech.com/allele3/Services_Lentiviral_Retroviral_Packaging.php
New product of the week 060110-060710: Columns for Miniprep and Gel Purification, ABP-PP-COLM100. If you can make your own buffers or have leftovers from any miniprep or gel purification kits, get these high capacity columns and lower your costs by up to 70%!
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008