Archive for August, 2017
Prominent regulators of neurogenesis are also critical in maintaining eye health
A group of researchers at Scintillon Institute in San Diego, California and their collaborators identified important roles of myocyte enhancer factor 2 (MEF2) in the pathogenesis of stress-induced photoreceptor degeneration, a condition that is thought to contribute to eye diseases, such as retinitis pigmentosa and age-related macular degeneration, as described in two recent publications (1,2). MEF2 is an activity-dependent transcription factor which is expressed in various organs, such as the heart, lymphocytes and brain. Dr. Stuart Lipton’s group has continuously worked on MEF2 since 1993, when they first isolated MEF2C, one of four mammalian MEF2 isoforms, in the developing brain. These researchers made seminal discoveries that established the notion that MEF2 transcription factors are prominent regulators of neurogenesis and neuronal survival in the brain. More recently, their work on MEF2C mutant mice led to the recognition of the human disease called MEF2C haploinsufficiency syndrome, in which children with heterozygous loss-of-function MEF2C mutations suffer from severe neurological conditions, including autism spectrum disorders, developmental and intellectual disabilities and seizures.
Scientists at the Neural Center of the Scintillon Institute have been expanding on MEF2 research, most recently turning their eyes to eye diseases (pun intended). Retinal photoreceptor cells express two MEF2 isoforms: MEF2C and MEF2D, the latter apparently being the predominant form. In a recent study, the researchers examined mutant mice completely lacking MEF2C or MEF2D (MEF2C- or MEF2D- “null” mice). Interestingly, both mutant mice developed drastic retinal degenerations by postnatal day 30. They then took a candidate approach to identify the molecular pathways affected by the loss of MEF2D in MEF2D-null mice. Among the pathways they examined was the PGC1? pathway, which regulates mitochondrial biogenesis and thereby protects cells from degeneration. The Lipton group determined that transcription of PGC1? was indeed reduced in MEF2D-null mice. Yet by overexpressing PGC1? in the retina of MEF2D-null mice, the researchers found that the retinal degeneration could be rescued.
In another related study, they examined mice lacking one copy of MEF2D (MEF2D-heteretozygous or “het” mice). Unlike MEF2D-null mice, MEF2D-het mice did not show any retinal regeneration when they were raised under normal housing environment. The researchers then exposed MEF2D-het mice to a strong white fluorescent light for 2 hours. While this light exposure did not induce any retinal degeneration in the wild-type mice, it did cause significant retinal cell death in MEF2D-het mice. The light exposure massively produced reactive oxygen species (ROS), which appeared to be the toxic cause. When searching for affected downstream pathways, they found that the transcription factor NRF2, a regulator of the cellular antioxidant defense response, fails to be induced by light exposure in MEF2D mutant mice. The researchers attempted to reverse light-induced retinal cell death by treating the MEF2D-het mice with carnosic acid, a chemical they had previously identified as a potent antioxidant and NRF2 activator. Intriguingly, treatment of carnosic acid drastically ameliorated the amount of light-induced retinal cell death in the mutant mice.
Together, these studies from the Scintillon Institute identify MEF2 transcription factors as crucial molecules in maintaining eye health. Importantly, they have shown that MEF2 and its downstream pathways can be targeted by drugs such as carnosic acid. Incidentally, carnosic acid is a naturally occurring chemical that is contained in herbs such as rosemary and sage. So, there may be a health benefit in cooking chicken and turkey with rosemary!
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008