Archive for September, 2017

NIH Awards Allele Collaboration with Grant to Fund the Development of Cell-Based Therapy for Alzheimer’s Disease

The NIH’s National Institute on Aging has awarded Allele Biotechnology and Pharmaceuticals (“Allele”) a Phase 1 SBIR grant to develop a stem cell-based therapy for the treatment of Alzheimer’s disease. The award includes funds for consortium activity with researchers at The Scintillon Institute, whose expertise in neurodegeneration leverages Allele’s expertise in stem cell technology.

Alzheimer’s disease is the most common form of dementia, affecting over 35 million people worldwide. Currently, there is no cure for this devastating disease. Patients with Alzheimer’s disease suffer from synaptic and neuronal loss, which is thought to be caused by the presence of a chemically “sticky” protein called amyloid beta (Aβ). The aggregates of Aβ may damage synaptic integrity and/or trigger immune cell activation, ultimately causing cell death.

Successful cell-replacement therapies would need to distribute cells to damaged areas in the brain and stimulate integration of new neurons into existing cellular networks. While the idea of replacing lost neurons sounds promising, even successfully transplanted neurons would face the same toxic environment that destroyed the original neurons.

Researchers at Allele and Scintillon propose a novel way to prevent further damage from Aβ to transplanted neural stem cells. They are collaborating to genetically modify human neural stem cells to express a small (58-amino acid) peptide derived from the protein called α1-takusan, which Scintillon researchers previously discovered to harbor a protective activity against Aβ-induced toxicity (1). The researchers will then transplant the cells expressing the α1-takusan fragment into transgenic mouse models to evaluate whether these cells can ameliorate or even rescue the neurological phenotypes related to Alzheimer’s disease.

The Allele-Scintillon team hopes that transplanting these cells will mitigate synaptic and neuronal damage from Aβ, ultimately leading to a novel cell-replacement therapy for Alzheimer’s disease. This is the second SBIR grant that Allele has received from the NIH on treating Alzheimer’s by combating Aβ toxicity; the first being the creation of nanoantibodies against Aβ, which has generated multiple single-domain antibodies now in early development.


(1) Nakanishi N, Ryan SD, Zhang X, Khan A, Holland T, Cho EG, Huang X, Liao FF, Xu H, Lipton SA, Tu S (2013) Synaptic protein alpha1-takusan mitigates amyloid-beta-induced synaptic loss via interaction with tau and postsynaptic density-95 at postsynaptic sites. J Neurosci 33:14170-14183. PMCID: PMC3756761