Allele Mail Bag

Allele Biotechnology & Pharmaceuticals Forming Cell Banking Business for Personalized Medicine

Allele to Generate Human iPS Cells under Good Manufacturing Practice for Private Individuals for Potential Therapeutic Use and Future diagnostics; Cell Banking Scientific Advisory Board formed

October 06, 2015 11:25 AM Eastern Daylight Time
SAN DIEGO–(BUSINESS WIRE)–Allele Biotechnology & Pharmaceuticals, Inc. (“Allele”), a leader in the development of specialized cells for regenerative medicine and pharmaceutical drug discovery, today announced plans to form a commercial business for the banking of human induced pluripotent stem cells (iPSCs) by private individuals.

Allele is pleased to have Drs. Mahendra Rao and Joseph Paulauskis as the first members of its Scientific Advisory Board (SAB) for iPSC banking and cGMP production. Dr. Rao is a world-renowned scientist in the fields of stem cells and medicine, having served as the VP of Regenerative Medicine at Invitrogen, founding Director of the NIH Center for Regenerative Medicine, Chair of the Biological Response Modifiers Committee (BRMAC, now CTAGT) of the FDA, and he is currently Chief Strategy Officer at Q Therapeutics. Dr. Paulauskis is the Chief Operating Officer of Paradigm Dx as well as the Vice-President of Research and Biobanking for the International Genomics Consortium, and has previously held senior positions in pharmacogenomics at Pfizer. Allele plans to make additional appointments to the SAB as individuals with world-class experience and expertise are identified.

Human iPSCs are cells that can be grown to virtually infinite numbers and can become any cell in the human body, features which hold great promise for therapies that can alleviate or cure human disease. Allele’s business model recognizes that an individual can have their own cells ready for future therapeutic use via the generation and storage of iPSCs from that individual’s skin cells. While this is similar to what is done with newborn cord blood, iPSCs can be generated from humans of any age. The banking of human iPSCs for potential future therapeutic use is a relatively new industry with unprecedented potential, and Allele is benefitting from expert opinions internally and from current and future SAB members, ensuring a solid scientific and ethical foundation for this business.

In addition to serving its customers, Allele’s iPSC bank will be an unparalleled resource for biomedical research. Proper consent and privacy guardianship will allow thousands of iPSC lines with accompanying sequence database and health information to be made available from the bank to scientists and clinicians. Currently, iPSC banks are funded by government agencies at multi-million dollar costs per project; Allele’s model does not rely on tax dollars and provides potentially a larger bank of iPSCs of higher quality to aid research and treatment efforts. To this end, NIH Director Dr. Francis Collins recently announced the implementation of the Precision Medicine Initiative (PMI), the goal of which is for health care professionals to have the resources to take into account individual differences in genes, environments, and lifestyles that contribute to disease when providing treatments in the new era.

“We are happy to have the guidance from world leading experts in stem cells, biobanking, and cell therapy fields such as Drs. Rao and Paulauskis”, said Jiwu Wang Ph.D., President and CEO of Allele. “We believe that setting the bar high will be ultimately beneficial to future customers, fellow researchers, industry partners, and regulatory agencies alike. We are happy to see the recent release by the International Society for Stem Cell Research of a draft of ‘Guidelines for the Clinical Translation of Stem Cells’, whose principals we plan to follow closely. We also intend to obtain certification by the cord blood banking association AABB, if possible, and abide by other regulatory rules as they become public, such as the “Stem Cell Clinical Research Management (tentative)” by the Health Commission of China, if and when we move to operate under that jurisdiction”.

Towards the establishment of this business effort, Allele has recently purchased an 18,000 square-foot facility, located near its headquarters in San Diego, California. This new facility will be the center of cGMP-production of human iPSCs using Allele’s proprietary synthetic mRNA platform, a technology that generates cells with neither the random integration of foreign DNA nor the use of viruses or virus-based elements, drawbacks common to other technologies for making hiPSCs; thus, the “footprint-free” cells generated by Allele’s synthetic mRNA platform are optimally suited for therapeutic use, and Allele’s technology has been licensed for clinical trials by companies such as Ocata Therapeutics (formerly ACT). This effort received strong support from Yuan Capital and Yifang Ventures.

About Allele Biotechnology & Pharmaceuticals, Inc.

Allele Biotechnology and Pharmaceuticals, Inc. is a private, San Diego-based company that explores the mechanisms of biological processes to develop technologies and products for biomedical researchers. Allele utilizes proprietary non-integrating cellular reprogramming methods to generate human and non-human primate iPS cells, GMP-grade human iPS cells and their derivatives, and differentiated cell types. With additional expertise in genome modification and cell-based sensors/reporters, Allele provides advanced cell-based assays for drug discovery. Allele also has developed a wide variety of reagents including superior fluorescent proteins and camelid antibodies. The company has also been a leader in the RNAi field with its patents in Pol III promoter-driven siRNA, shRNA, and miRNA.

Contacts
Allele Biotechnology & Pharmaceuticals, Inc.
Matthew A. Singer, Ph. D.
Director of Business Development and Strategic Alliances
+1 858-587-6645, ext. 1
mattsinger@allelebiotech.com
www.allelebiotech.com

Tags: , , , , , , , , , , ,

Press Release: Ocata Therapeutics Licenses Induced Pluripotent Stem Cell Technology from Allele Biotechnology and Extends Leadership Position in Cell Therapy Capabilities

Ocata Announces Proof-of-Concept Results in Restoring Vision and Prevention of Blindness

MARLBOROUGH, Mass., Mar 24, 2015 (BUSINESS WIRE) — Ocata Therapeutics, Inc. (“Ocata” or “the Company”; NASDAQ: OCAT), a leader in the field of Regenerative Ophthalmology™, today announced that it has entered into a definitive agreement with Allele Biotechnology & Pharmaceuticals, Inc. of San Diego, CA (“Allele”) to access Allele’s proprietary technology for generating human induced pluripotent stem cells (“iPSCs”).

“This agreement with Allele is part of our strategy to broaden our technology platform and increase our leadership in regenerative ophthalmology,” said Paul Wotton Ph.D., President and CEO of Ocata. “Ocata can now take advantage of induced and embryonic pluripotent stem cells to produce commercially viable human tissue for transplantation. We recently confirmed proof of concept in creating photoreceptors capable of preventing blindness and restoring vision in established animal models. Data from these studies will be published later this year.”

Since Dr. Yamanaka discovered how to generate iPSCs in 2007 there has been tremendous enthusiasm about the potential to use these pluripotent cells to develop commercially viable therapies. Despite many efforts to develop iPSC derived therapies in the same scalable and reliable way as embryonic stem cells, many of those efforts have been unsuccessful due to issues relating to the growth capacity, differentiation potentials and epigenetic properties of iPSCs. The “footprint-free” reprogramming technology developed by Allele potentially offers a reliable and scalable process for producing iPSCs with superior properties and is a major step for translation of iPSC technology to practical clinical use. These iPSCs can potentially be used to manufacture millions of treatment doses as off-the-shelf therapies for any patient.

“We have had a strong leadership role in this area,” said Robert Lanza, M.D., Chief Scientific Officer of Ocata. “Ocata has extensive experience and patent rights in generating both ocular and non-ocular cell types from human iPSCs. We have painstakingly and patiently evaluated many different iPSC technologies and selected the Allele technology only after we were satisfied and confident that this represented the best of all approaches and could permit us to generate transplantable tissues that would be potentially safe in human patients. In our hands, the iPSCs we are generating are comparable to our embryonic stem cells in those features required for use in potential human therapies.”

“It is particularly rewarding to us that Ocata, a company whose understanding of the science and regulatory requirements in this space is unparalleled, has selected the iPSC technology developed at Allele for application in its own pipeline,” said Jiwu Wang Ph.D., President and CEO of Allele. “It only serves to confirm our belief that our iPSC platform is a solution to what otherwise have been unresolved issues associated with the maturation of iPSCs to a fully functional state. The ability to predictably derive stable iPSC lines without using any viral element or foreign DNA enables both fundamental scientific research and clinical applications, which has been the mission of Allele Biotechnology from its inception.”

For Contact at Allele:
oligo@allelebiotech.com,
P 858-587-6645, 800-991-RNAi(7624)
F 858-587-6692

For full release with Ocata contact, see MarketWatch

Allele’s SBIR Grant to Develop All-RNA CRISPR

Precise engineering of the genomes of mammalian cells enabled biological and medical applications researchers had dreamed of for decades. Recent developments in the stem cell field have created even more excitement for genetically modifying genomes because it enables delivering more beneficial stem cell-derived therapeutic cells to patients [1]. For instance, by correcting a gene mutation known to be critical to Parkinson’s disease, LRRK2 G2019S, in patient-specific iPSCs (induced pluripotent stem cells), it appeared possible to rescue neurodegenerative phenotypes [2].

Significant amount of fund and energy had been invested in technologies such as ZFN and TALEN, however, judging from the explosion of publications and business activities in just about 2 years since the illustration of its mechanism (just today, Jan 8th, 2015, Novartis announced CRISPR collaborations with Intellia, Caribou, applying it in CAR T cell and HSCs), the CRISPR/cas system is the rising star. This system uses a guide RNA to direct the traffic of a single nuclease towards different targets on a chromosome to alter DNA sequence through cutting. The nuclease, cas9, can be mutated from a double-stranded DNA endonuclease to a single-strand cutter or a non-cutting block, or further fused to various functional domains such as a transcription activation domain. This system can also be used to edit RNA molecules.

A weak spot on the sharp blade of CRISPR is, like any methods for creating loss-of-function effects (RNAi if you remember), the potential of off-target effects. While they can never be completely avoided, with the ever growing popularity of deep sequencing, at least we can know all unintended changes on the edited genome. Almost a perfect storm! As an interesting side story, when we at Allele Biotech first saw the paper in Science describing the CIRPSR/cas system [3], we immediately wrote an SBIR grant application for applying the bacterial system to mammalian cells. The first round of review in December 2012 concluded that it would not work due to eukaryotes’ compact chromatin structures. Of course, the flurry of publication in early 2013, while our application was being resubmitted, proved otherwise. The good news is, Allele Biotech still received an SBIR grant from NIGMS in 2014. Unlike most of the genome editing platforms known in the literature, our goal was to build an all-RNA CRISPR/cas system, thereby with higher potency, less off-target effects, and, as a footprint-free platform, more suitable for therapeutic applications. This system will be combined with our strengths in iPSC and stem cell differentiation, fluorescent protein markers, and deep sequencing based bioinformatics to improve cell therapy and cell based assays.

1 Urnov, F.D., et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010. 11(9): p. 636-46.
2 Reinhardt, P., et al., Genetic Correction of a LRRK2 Mutation in Human iPSCs Links Parkinsonian Neurodegeneration to ERK-Dependent Changes in Gene Expression. Cell Stem Cell, 2013. 12(3): p. 354-67.
3 Jinek, M., et al., A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012.

Tags: , , , , , , , ,

What Does It Take to Bring New Nano Antibodies (nAbs) to the Hands of Researchers?

Judging from the hundreds of papers published using camelid VHH antibodies as reagents, there are probably thousands of researchers who have experience with this type of antibodies by now. We like to call the ~15kD camelid VHH antibody nano antibody or nAbTM. Once someone experiences how well a nAb works for co-IP using a fluorescent protein as tag, they often wonder what it takes to bring nAbs to broader use.

The success of a nAb project starts with the antigen presentation. It is critical to build the capability to produce large quantities of recombinant antigen for immunization. At Allele, our scientists also established some unique presentation formats for traditionally difficult targets (e.g. large membrane proteins).

After llama immunization, the next step is screening. With the goal of creating large scale nano antibodies against diverse targets, we have developed multiple high throughput screening methods to cover very large, diverse libraries generated from immunized animals. The technologies will continue to evolve as the scale of nAb generation continues to expand. We have the ability to functionally screen for site-blocking antibodies and antibodies that only recognized natively folded targets, or targets in their naturally occurring presentations.

A nAb isolation project does not end with the obtaining of a cDNA clone. Or, if it does, the nAb is probably not as great as what Allele Biotech has been offering. In our hands, all nAbs go through an engineering step beginning with the generation of a 3D structural model of the isolated clone. We use structure-guided design to alter the protein, allowing us to improve its properties. This includes increasing affinity, solubility, or altering the protein to improve performance for specific applications. We also like to use known structures of traditional monoclonal antibodies to assist camelid VHH antibody engineering against specific targets.

With a finalized clone in hand, the next step is to establish protocols for commercial production. The Allele team spends a tremendous amount of effort aimed solely at high-yield, low-cost recombinant VHH antibody production in a variety of formats, so that the costs for other scientists to take advantage of these great reagents can be kept as low as possible.

Last but not the least, nAb labeling, including conjugating stable soluble VHH antibody to solid supports for immunoprecipitation or to fluorophores for detection, requires additional expertise and tight operation control. However, our vision is to have a modular system for antibody labeling that will enable the end user to select from a variety of fluorophores and other detection tags, which can be instantaneously and irreversibly coupled via simple mixing.

Note added: we work with commercial (diagnostic and clinical) partners from developing nAbs all the way to the market. We have expert scientists available to customers and licensees for consultation and troubleshooting antibody- and imaging-related questions and problems.

Tags: , , , , , , , , , , ,

Allele Biotech Acquires BioCarta’s Distribution Business

Allele Biotechnology & Pharmaceuticals, Inc. is pleased to announce that as of January 1st, 2014, it has acquired the distribution business of BioCarta. This transaction will strengthen Allele Biotech’s presence in the antibody field, enhancing a broad customer and partnership base to further its plan in clinical diagnostics. Biocarta has been a leader in the field of gene expression for 10 years and has contributed immensely through its world leading effort of charting molecular biology pathways. The gene function maps published by Biocarta have been used and referred to by the NIH through the National Center for Biological Information and National Library of Medicine.

Among its well-regarded distribution business, for the past 11 years BioCarta had been the US and Canada’s exclusive distributor of Immune Function Assay Kits for Flow Cytometric Analysis by Glycotope Biotechnology, GmbH. These kits are clinically approved blood cell diagnostic assay products that are also heavily used for non-clinical blood studies.

Allele Biotech has recently launched a major business plan to create a large number of nano antibodies (nAbsTM). The nAbTM line will be great research tools for immunoprecipitation (co-IP), immunohistochemistry (IHC), Western blotting, co-crystallization, biologics purification. Additionally, nAbsTM willbe suitable for diagnostic assays because the single domain antibodies derived from camelid family animals are sturdy, specific, and low-cost. The inclusion of the BioCarta distribution channels in the antibody and pathway reagent fields will help speed up Allele Biotech’s expansion.

Tags: , , , , , ,

Thursday, January 16th, 2014 Allele Mail Bag No Comments