nAb: Camelid Antibodies, Nanobodies, VHH

Allele awarded NIH grant to develop nanoantibody therapies for treatment of sepsis

News Medical Life Sciences: The National Institute of General Medical Sciences of NIH has awarded a Small Business Innovative Research grant to Allele Biotechnology and Pharmaceuticals to develop new single-domain nanoantibody (nAb) therapies for the treatment of sepsis. Sepsis and septic shock are among the leading causes of death in intensive care units (ICUs). The global incidence of sepsis has increased over the years, while the mortality rate, which can reach over 60% for septic shock, has been virtually unchanged for the past three decades due to lack of a cure or effective treatments.

Scientists at Allele have focused on how to intervene with so-called “cytokine storm,” an intense inflammatory response that occurs early in the pathogenesis of sepsis and causes vascular endothelial barrier dysfunction. Other companies have attempted to develop sepsis therapeutics using conventional monoclonal antibodies targeting similar upstream cytokines. However, monoclonal antibody drugs failed to meaningfully improve the mortality rate of sepsis in clinical trials, because the antibodies did not produce significant enough benefits to patients within the relevant time window.

Allele has engineered novel multi-valent and multi-specific nAbs, originally identified from an immunized llama, to combat cytokine storms. These nAbs have superior therapeutic efficacy over conventional antibody drugs in animal models of sepsis because of their unique structural and functional properties. nAbs, also known as VHH domains, are small fragments of antibodies (12-15 Kd) that are very stable and easy to produce. Allele’s research team has found that this class of antibodies possess an outstanding capacity to penetrate to tissues and tumors. Moreover, nAbs can bind epitopes that are difficult for conventional antibodies to access. The first ever approval of a nAb-based drug—caplacizumab, a von Willebrand factor (vWF) target— has been issued to a Belgian company, Ablynx, which has worked almost exclusively on nAbs for 17 years. Ablynx was recently acquired by Sanofi for $4.8 billion.

Allele’s involvement in the nAb field began in 2008. The biotech company has received continued NIH funding since 2011 and private investments since 2013. These funds strengthened Allele’s platform, allowing Allele to drastically enhance its capacity of internal research and outside collaboration. Allele now generates high quality nAbs targeting the most devastating diseases including cancers, inflammation, neurological and ophthalmological diseases, and possesses dozens of exciting nAb drug candidates in its pipeline. With the new funding support from NIH, Allele will aggressively move towards clinical stage in finding a much-needed medicine that reduces death from sepsis.

Source:
http://www.allelebiotech.com/

Tags: , , , , ,

Nanoantibody Development Shows Momentum —Join the Dance Now Or Play Catch-up Forever

Oct 8, 2017, San Diego, CA: Last week, Belgian company Ablynx Inc. announced IPO plans based on robust results from a Phase III study with caplacizumab, the very first nanoantibody drug ready for market.

Caplacizumab targets von Willebrand factor (vWF), will benefit patients afflicted with acquired thrombotic thrombocytopenic purpura (aTTP), a life-threatening autoimmune blood clotting disorder.

The Phase III study (named as HERCULES) met the primary endpoint, namely a statistically significant reduction in time to platelet count response in patients, besides providing standard-of-care. Patients on caplacizumab were 1.5 times more likely to achieve platelet count response at any given time point, compared to placebo control. In addition, the study also met two key secondary endpoints, namely, a 74% reduction in the percentage of patients with recurrence of aTTP or related death, and absence of any major thromboembolic event during study. In addition, the proportion of patients with a recurrence of aTTP during the study period (including the 28 day follow-up period after discontinuation of the drug) was 67% lower in the caplacizumab arm compared to the placebo arm, demonstrating the sustained benefits from the treatment.

Ablynx immediately sought to capitalize the outstanding clinical benefits provided by caplacizumab. On the same day of publicizing their clinical trial results, Ablynx announced filing of a Registration Statement on Form F-1 with the U.S. Securities and Exchange Commission for a proposed stock offering (IPO in the US in the form of American Depositary Shares (“ADSs”) and private placement of ordinary shares in Europe). Ablynx plans to obtain $150 million to finance its commercialization of their new nanoantibody in the U.S. and Europe. With the new developments, the company also expects to accelerate the clinical development of other nanoantibodies, including ALX-0171 which targets respiratory syncytial virus (RSV) infection.

With these exciting news out on the market, now is a great time for the traditional players in the pharmaceutical industry to take a good look and seriously evaluate the possibility to add nanoantibody to their development portfolio. The time is now because success of the new Ablynx drug has minimized the investment risk by proving the feasibility, potential, and advantages of nanoantibodies. The time is now because the field of therapeutic nanoantibodies is still wide open, unlike other crowded, highly competitive arena of conventional antibodies. The time is now, also because with nanoantibodies just starting to get onto the map, an investment in nanoantibodies has the potential of delivering extraordinary returns.

Allele is actively involved in the preclinical development of therapeutic nanoantibody for the past several years, and has accumulated significant IP and technological know-how in this space, and a dozen or so programs ranging from oncology to inflammation. We have a high-speed new technology by which we can get dozens of new nanoantibodies per year, and a pipeline by which we routinely perform humanization, bi- or multi-valency, and expression optimization. We welcome inquiries into our development program, collaboration or joint development proposals, and in exploring investment opportunities with us.

Contact Alleleblog or the Allele nAb team: Dr. Jenny Higginbotham, jhigginbotham@allelebiotech.com; Dr. Nobuki Nakanishi, nnakanishi@allelebiotech.com

Tags: , , , , , , , , , ,

Ablynx Develops Nano Antibody for Treatment of Rare Clotting Disorder

Last week, Ablynx announced substantial progress in the development of the nano antibody drug caplicizumab to treat acquired thrombotic thrombocytopenic purpura (aTTP), a rare, but life-threatening autoimmune disease. The Belgian biopharmaceutical company has submitted a Marketing Authorization Application (MAA) to the European Medicines Agency (EMA) for approval. If accepted, caplicizumab will not only be the first therapeutic specifically indicated for the treatment of aTTP, but also the first approved nano antibody drug on the market.

aTTP is characterized by the autoimmune impairment of ADAMTS13, an enzyme that normally cleaves multimeric von Willebrand factor (vWF) into its functional form. Without the function of ADAMTS13, multimeric vWF forms aggregates with platelets in the blood. Low free platelet count and excess clotting result in thrombotic complications and a significant risk of organ damage due to the blockages of blood flow to tissues.

The current standard of care for aTTP involves immunosuppression and daily plasma exchange transfusion, in which a patient’s plasma is replaced with donor plasma to remove platelet-vWF aggregates. Caplicizumab is an anti-vWF nano antibody that prevents the formation of aggregates by blocking the interaction of multimeric vWF complexes with platelets.

While dozens of monoclonal antibodies have been approved by the FDA for therapeutic use (with hundreds more undergoing clinical trials), caplicizumab is the first therapeutic nano antibody. Nano antibodies are single-domain antibody fragments that bear full antigen binding capacity like monoclonal antibodies, but have a smaller size and unique structure, giving them features of small-molecule drugs. Nano antibodies are more stable than conventional monoclonal antibodies, allowing for multiple administration routes, and can be humanized to lower toxicity and immunogenicity. Because they are encoded by single genes, nano antibodies are easier and more cost-effective than traditional antibodies to engineer and manufacture.

Currently, caplicizumab is undergoing Phase III clinical trials and a three-year follow-up study has been initiated to determine the long-term safety and efficacy of this drug. Ablynx aims to commercialize caplicizumab in North America and Europe upon the trial’s conclusion and approval of BLA filing in 2018.

With the obvious advantages of nano antibodies over conventional monoclonal antibodies as biological drugs, caplicizumab is likely only the first of many to come.

Allele Researchers Engineer Modified Nanoantibodies to Increase Sensitivity in Biochemical Assays

Researchers at Allele have published new work demonstrating a novel application for nanoantibodies (nAbs) in direct signal amplification. nAbs have distinguishable qualities that set them apart from their traditional IgG counterparts, including significantly smaller size, better stability, and excellent specificity. However, because of their small size, there are no suitable secondary antibodies for traditional assays like immunohistochemistry, immunofluorescence, and other biochemical assays that require an enhanced signal.

The researchers engineered a modified nAb, termed “nAb Plus,” to directly amplify nAb signal detection through the addition of a small scaffolding protein containing numerous reporter binding sites. nAb Plus bypasses the need for secondary antibodies or additional amplification steps, streamlining biochemical assays and decreasing costs of reagents. The authors demonstrate the use of nAb Plus using immunohistochemistry, an assay typically requiring one or more signal amplification steps. However, nAb Plus could also be incorporated in any biochemical assay needing signal enhancement.

Abstract: Revealing the spatial arrangement of molecules within a tissue through immunohistochemistry (IHC) is an invaluable tool in biomedical research and clinical diagnostics. Choosing both the appropriate antibody and amplification system is paramount to the pathologic interpretation of the tissue at hand. The use of single domain VHH nanoantibodies (nAbs) promise more robust and consistent results in IHC, but are rarely used as an alternative to conventional immunoglobulin G (IgG) antibodies. nAbs are originally obtained from llamas and are the smallest antigen-binding fragments available. To determine whether the unique biophysical properties of nAbs give them an advantage in IHC, we first compared a basic fibroblast growth factor nAb to polyclonal IgG antibodies using tissue isolated from pancreatic adenocarcinoma. The nAb was extremely effective in antigen signal detection and allowed for a more streamlined and reproducible protocol. Furthermore, because nAbs are expressed in Escherichia coli from a single gene, they are quite amenable to genetic engineering. As such, we then covalently bound a highly biotinylated amplifier protein to basic fibroblast growth factor and p16 nAbs (termed nAb Plus), resulting in improved IHC sensitivity. The use of a biotinylated nAb Plus not only achieved local, covalent signal amplification, but also eliminated the need for a secondary antibody and subsequent amplification steps. These results highlight nAbs as valuable alternatives to conventional IgG antibodies, decreasing overall processing time and costs of reagents while increasing sensitivity and reproducibility across individual IHC assays.

Link to full text

Receive Allele nAb products

The NIH Awards Allele with Grant for the Development of a New Antibody Therapy for Treating Alzheimer’s Disease

SAN DIEGO–(BUSINESS WIRE)–

The National Institute on Aging of the NIH has awarded a grant to Allele Biotechnology and Pharmaceuticals (“Allele”) to develop a new antibody therapy for treating Alzheimer’s disease. Alzheimer’s disease is the most common cause of dementia, but there are currently no treatments to stop or reverse its progression.

Alongside academic collaborators, scientists at Allele have revealed a strong correlation between a previously uncharacterized target gene and Alzheimer’s disease. They discovered that expression of the gene reduces beta-amyloid production and tau phosphorylation, two components of plaque formation in Alzheimer’s disease. Furthermore, high levels of this protein in the brain can counteract loss of synapses and cognitive impairments in mice.

Allele will generate a panel of antibodies that recognize this protein with the goal of employing one of these antibodies as a therapeutic drug candidate. The antibodies’ unique size and shape allow them to pass the blood-brain barrier to reach crucial regions of the brain, and each antibody can be easily modified and engineered to heighten its therapeutic potential. Researchers at Allele hope that an antibody treatment will improve the function of its target protein in the brains of Alzheimer’s patients and ultimately reduce pathogenesis of the disease.

Recombinant antibodies represent one of the most important classes of biological therapeutics: 80% of the best selling drugs on the market are antibodies; immune checkpoint therapies and CAR-T cell therapies rely on antibodies. Continuously seeking unique antibodies against high value targets is a key focus of Allele, along with its induced pluripotent stem cell (iPSC) programs and iPSC-based drug screening projects. With the support of the new NIH grant, Allele will not only move closer to finding antibody drug candidates in fighting one of the most devastating diseases, but also generate long-needed research tools for other scientists to further study Alzheimer’s disease. For example, fusion of these antibodies to fluorescent proteins such as mNeonGreen can be used to image Alzheimer’s disease-related factors in cultured neurons, astrocytes, oligodendrocytes, or “minibrain”-like organoids derived from human iPSCs.

View source version on businesswire.com.