NIH Budget and You

Allele awarded NIH grant to develop nanoantibody therapies for treatment of sepsis

News Medical Life Sciences: The National Institute of General Medical Sciences of NIH has awarded a Small Business Innovative Research grant to Allele Biotechnology and Pharmaceuticals to develop new single-domain nanoantibody (nAb) therapies for the treatment of sepsis. Sepsis and septic shock are among the leading causes of death in intensive care units (ICUs). The global incidence of sepsis has increased over the years, while the mortality rate, which can reach over 60% for septic shock, has been virtually unchanged for the past three decades due to lack of a cure or effective treatments.

Scientists at Allele have focused on how to intervene with so-called “cytokine storm,” an intense inflammatory response that occurs early in the pathogenesis of sepsis and causes vascular endothelial barrier dysfunction. Other companies have attempted to develop sepsis therapeutics using conventional monoclonal antibodies targeting similar upstream cytokines. However, monoclonal antibody drugs failed to meaningfully improve the mortality rate of sepsis in clinical trials, because the antibodies did not produce significant enough benefits to patients within the relevant time window.

Allele has engineered novel multi-valent and multi-specific nAbs, originally identified from an immunized llama, to combat cytokine storms. These nAbs have superior therapeutic efficacy over conventional antibody drugs in animal models of sepsis because of their unique structural and functional properties. nAbs, also known as VHH domains, are small fragments of antibodies (12-15 Kd) that are very stable and easy to produce. Allele’s research team has found that this class of antibodies possess an outstanding capacity to penetrate to tissues and tumors. Moreover, nAbs can bind epitopes that are difficult for conventional antibodies to access. The first ever approval of a nAb-based drug—caplacizumab, a von Willebrand factor (vWF) target— has been issued to a Belgian company, Ablynx, which has worked almost exclusively on nAbs for 17 years. Ablynx was recently acquired by Sanofi for $4.8 billion.

Allele’s involvement in the nAb field began in 2008. The biotech company has received continued NIH funding since 2011 and private investments since 2013. These funds strengthened Allele’s platform, allowing Allele to drastically enhance its capacity of internal research and outside collaboration. Allele now generates high quality nAbs targeting the most devastating diseases including cancers, inflammation, neurological and ophthalmological diseases, and possesses dozens of exciting nAb drug candidates in its pipeline. With the new funding support from NIH, Allele will aggressively move towards clinical stage in finding a much-needed medicine that reduces death from sepsis.

Source:
http://www.allelebiotech.com/

Tags: , , , , ,

The NIH Awards Allele with Grant for the Development of a New Antibody Therapy for Treating Alzheimer’s Disease

SAN DIEGO–(BUSINESS WIRE)–

The National Institute on Aging of the NIH has awarded a grant to Allele Biotechnology and Pharmaceuticals (“Allele”) to develop a new antibody therapy for treating Alzheimer’s disease. Alzheimer’s disease is the most common cause of dementia, but there are currently no treatments to stop or reverse its progression.

Alongside academic collaborators, scientists at Allele have revealed a strong correlation between a previously uncharacterized target gene and Alzheimer’s disease. They discovered that expression of the gene reduces beta-amyloid production and tau phosphorylation, two components of plaque formation in Alzheimer’s disease. Furthermore, high levels of this protein in the brain can counteract loss of synapses and cognitive impairments in mice.

Allele will generate a panel of antibodies that recognize this protein with the goal of employing one of these antibodies as a therapeutic drug candidate. The antibodies’ unique size and shape allow them to pass the blood-brain barrier to reach crucial regions of the brain, and each antibody can be easily modified and engineered to heighten its therapeutic potential. Researchers at Allele hope that an antibody treatment will improve the function of its target protein in the brains of Alzheimer’s patients and ultimately reduce pathogenesis of the disease.

Recombinant antibodies represent one of the most important classes of biological therapeutics: 80% of the best selling drugs on the market are antibodies; immune checkpoint therapies and CAR-T cell therapies rely on antibodies. Continuously seeking unique antibodies against high value targets is a key focus of Allele, along with its induced pluripotent stem cell (iPSC) programs and iPSC-based drug screening projects. With the support of the new NIH grant, Allele will not only move closer to finding antibody drug candidates in fighting one of the most devastating diseases, but also generate long-needed research tools for other scientists to further study Alzheimer’s disease. For example, fusion of these antibodies to fluorescent proteins such as mNeonGreen can be used to image Alzheimer’s disease-related factors in cultured neurons, astrocytes, oligodendrocytes, or “minibrain”-like organoids derived from human iPSCs.

View source version on businesswire.com.

Allele Receives NIH Award to Fund the Development of Large-Scale Stem Cell Production

SAN DIEGO–(BUSINESS WIRE)–

The NIH’s National Heart, Lung, and Blood Institute has awarded Allele Biotechnology and Pharmaceuticals (“Allele”) a Phase 1 SBIR grant to develop a novel manufacturing system to produce stem cell-derived human tissue and cells for clinical therapy. By increasing the scale of production and reducing the cost of manufacturing, Allele is confident that this system will overcome a considerable roadblock for clinical applications of stem cells, which is to produce a sufficient amount of therapeutic material at a manageable cost.

At the core of translating this potentially game-changing technology into medically-beneficial applications is the use of induced pluripotent stem cells (iPSCs), which hold unprecedented promise of providing any type of immune-matched cells of unlimited quantity. Allele has already developed a patented method of reprogramming somatic cells into iPSCs, secured industrial licensees using this technology, and initiated cGMP procedures for clinical applications.

Further moving iPSCs into commercially viable clinical cell therapies still requires overcoming one major barrier: the prohibitive cost of manufacturing iPSC-derived cells, mostly due to the need of expensive clinical-grade growth factors and cytokines. For example, the estimated cost of the growth factors and cytokines needed to produce a typical transfusion of platelets is $87,252.

Ultimately, Allele’s goal is to create clinical-grade iPSCs and control their differentiation into specific cell types at a scale large enough to satisfy the clinical demand. “We have been diligently working on removing the use of protein factors through our own proprietary protocols to generate many clinically-relevant cell types, including beta cells, mesenchymal stem cells, neural progenitor cells, oligodendrocytes, liver, and heart cells,” said Dr. Jiwu Wang, Allele’s CEO and the Principle Investigator of the new NIH grant. “By developing a recombinant protein-independent, real-time adjusted culture system under this project, we are confident that—as many groundbreaking technologies such as genome sequencing have done—the manufacturing process will mature and the costs will come down to eventually benefit everybody.”

Allele’s plan gained trust from the NIH scientific review panel, which gave it a near-perfect score. With this funding, Allele’s researchers will move even faster towards the goal of bringing iPSC products to clinical applications. Successful efforts will also likely provide a vehicle for genome-editing technologies such as CRISPR to be delivered into patients.

View source version on businesswire.com.

Stem Cell Therapies: What’s Approved, What Isn’t, and Why Not?

With acceptance of stem cell therapies growing, so have controversies surrounding regulations.

Desperate to heal sports injuries, top professional athletes have been known to pay tens of thousands of dollars for experimental stem cell treatments that many used to find controversial. But now, stem cell therapies have become more mainstream and are no longer limited to professional athletes. Stem cell clinics offer both medical and non-medical treatments with claims of improving aesthetics and quality of life.

One recent study found over 400 websites – with the largest portion in the United States – advertising stem cell-based therapies (1); another found over 570 U.S. clinics offering stem cell interventions (2), giving more evidence that the market for stem cell therapies in the U.S. is growing at an accelerated rate. Yet these therapies are too often based on unfounded claims and lack proper clinical trials or authorized regulation. Despite what some clinics claim, very few stem cell treatments are currently available that are actually approved by the Food and Drug Administration (FDA). Hematopoietic stem cells harvested from bone marrow are routinely used in transplant procedures to treat patients with cancer or other blood or immune system disorders. Banking of umbilical cord blood is FDA-regulated and its use is approved for certain indications. Otherwise, consumers should be wary of claims by stem cell clinics implying FDA-approval.

So why aren’t more FDA-approved stem cell therapies available?

The FDA has strict regulations on using stem cell products in humans. In most cases, stem cell-based products are categorized the same way as pharmaceutical drugs. Therefore, each new therapy must go through a rigorous process including pre-clinical animal trials, phased clinical studies, and pre-market review by the FDA prior to offering the treatment in the clinic.

And with stringent regulatory requirements comes prohibitive costs. Research animals, Phase I-III clinical trials, and the regulatory demands for good manufacturing practice (GMP) labs result in an extraordinarily costly process that may hinder the progress of new therapies. The cost of developing a new drug has even been estimated to reach billions of dollars.

Nevertheless, a complete lack of regulation of stem cell therapies – as is seen in many of the stem cell clinics springing up worldwide – is clearly problematic. Alarmingly, many clinics advertise claims related to medical diseases for which there is no scientific consensus that supports their safety or efficacy. Premature commercialization of unproven therapies not only puts patients at risk, but also jeopardizes the credibility of still-developing stem cell products.

One of the most exciting outlooks for stem cell therapy is the prospect of using one’s own stem cells for personalized medicine. Should the development of an autologous stem cell product really be regulated the same way as a pharmaceutical drug, which is aimed at treating huge populations of people? If not, how should stem cell products be regulated?

In an effort to make the transition of novel stem cell products to the clinic more seamless, some countries have made significant changes in regulations. For instance, in 2014, Japan broke out a separate regulatory system for stem cell products that softened legislation dramatically to require only limited safety and efficacy data. Some argue that countries with softer regulations and less stringent safety and efficacy milestones, such as Japan, have poised themselves to become the likely pioneers in the field of regenerative medicine.

Regulatory frameworks for the clinical application of stem cell products are still evolving in most countries, including the U.S. In March, the Reliable and Effective Growth for Regenerative health Options that improve Wellness (REGROW) Act was introduced to congress. This change in legislation would remove some of the regulatory hurdles that hinder the progress of biologic therapies.

Regardless, the FDA needs to establish a more reasonable regulatory system that can evaluate the safety and efficacy of stem cell products in a more efficient manner.


1.  Berger, I., et al., Global Distribution of Businesses Marketing Stem Cell-Based Interventions. Cell Stem Cell, 2016. 19(2): p. 158-62.
2.  Turner, L. and P. Knoepfler, Selling Stem Cells in the USA: Assessing the Direct-to-Consumer Industry. Cell Stem Cell, 2016. 19(2): p. 154-7.

 

Allele’s SBIR Grant to Develop All-RNA CRISPR

Precise engineering of the genomes of mammalian cells enabled biological and medical applications researchers had dreamed of for decades. Recent developments in the stem cell field have created even more excitement for genetically modifying genomes because it enables delivering more beneficial stem cell-derived therapeutic cells to patients [1]. For instance, by correcting a gene mutation known to be critical to Parkinson’s disease, LRRK2 G2019S, in patient-specific iPSCs (induced pluripotent stem cells), it appeared possible to rescue neurodegenerative phenotypes [2].

Significant amount of fund and energy had been invested in technologies such as ZFN and TALEN, however, judging from the explosion of publications and business activities in just about 2 years since the illustration of its mechanism (just today, Jan 8th, 2015, Novartis announced CRISPR collaborations with Intellia, Caribou, applying it in CAR T cell and HSCs), the CRISPR/cas system is the rising star. This system uses a guide RNA to direct the traffic of a single nuclease towards different targets on a chromosome to alter DNA sequence through cutting. The nuclease, cas9, can be mutated from a double-stranded DNA endonuclease to a single-strand cutter or a non-cutting block, or further fused to various functional domains such as a transcription activation domain. This system can also be used to edit RNA molecules.

A weak spot on the sharp blade of CRISPR is, like any methods for creating loss-of-function effects (RNAi if you remember), the potential of off-target effects. While they can never be completely avoided, with the ever growing popularity of deep sequencing, at least we can know all unintended changes on the edited genome. Almost a perfect storm! As an interesting side story, when we at Allele Biotech first saw the paper in Science describing the CIRPSR/cas system [3], we immediately wrote an SBIR grant application for applying the bacterial system to mammalian cells. The first round of review in December 2012 concluded that it would not work due to eukaryotes’ compact chromatin structures. Of course, the flurry of publication in early 2013, while our application was being resubmitted, proved otherwise. The good news is, Allele Biotech still received an SBIR grant from NIGMS in 2014. Unlike most of the genome editing platforms known in the literature, our goal was to build an all-RNA CRISPR/cas system, thereby with higher potency, less off-target effects, and, as a footprint-free platform, more suitable for therapeutic applications. This system will be combined with our strengths in iPSC and stem cell differentiation, fluorescent protein markers, and deep sequencing based bioinformatics to improve cell therapy and cell based assays.

1 Urnov, F.D., et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010. 11(9): p. 636-46.
2 Reinhardt, P., et al., Genetic Correction of a LRRK2 Mutation in Human iPSCs Links Parkinsonian Neurodegeneration to ERK-Dependent Changes in Gene Expression. Cell Stem Cell, 2013. 12(3): p. 354-67.
3 Jinek, M., et al., A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012.

Tags: , , , , , , , ,