Competition from the Marketplace to the Courtroom
The hottest subject in the biological research equipment field has to be whole genome sequencing; hence it is no surprise that companies execute mergers and acquisitions in order to position themselves to go after their competitors in an attempt to corner this valuable market.
A bit of the background history: Illumina was started a decade ago to build DNA chip arrays by people with experience at Affymetrix, when the latter was the first and absolute leader in the DNA chip field. For years, rather than providing DNA chips, Illumina was known for generating revenue by selling oligonucleotides at 20% of the prevailing market price, essentially starting the low end oligo market. Just three or four years ago, it was a front page promotion on Invitrogen’s website to sell Illumina’s oligos through a production/shipping alliance, a cooperation previously unheard of in our field for such low price, non-commodity products. This move quite probably contributed to the decisions made by the more dedicated oligo company, IDT, to acquire local oligo production houses and move to the West coast (Allele opted out of such an acquisition and later did one of its own by taking over Orbigen and since moved into the viral systems and antibody fields). At that point when whole genome sequencing technologies were becoming mature and marketable, Illumina had performed brilliantly in out competing the previously dominant chip supplier Affymetrix, acquired Solexa, and quickly moved into the whole genome sequencing with Genome Analyzer and Genome Analyzer II, a move Affi’s management probably regretted not making.
In the years roughly around 2005-2007, Applied Biosystems, Inc. (ABI) was developing its own genome analysis equipment, the SOLiD system. It surely had a solid base to build on from its strong leadership in providing sequencer and analyzers for many years. Earlier in the year Invitrogen and ABI merged to form Life Technologies, pitching Invitrogen (now LifeTech) and Illumina in a collision course in battle for dominance in genomic analysis. In September, LifeTech brought suit against Illumina for patent infringement; in October Illumina countered with suits of its own. While the fight in court may be long and only sprinkled with occasional fireworks, the competition in the market could be fierce and should ultimately decide on whose technology is superior and offered at better prices. From the technical presentation made by sales teams to us during on site seminars, Solexa’s science sounded better. I was sitting next to Jay Flatley, CEO of Illumina at a San Diego biotech CEO dinner, and heard him predicting that the technology would advance and in a few years, one could get their own genome sequenced for about a thousand dollars, ~10% of the current cost! That’s simply innovation and competition at work. But watch out, a new wave of sequencing technologies based on single molecule capture might make the Illumina and LifeTech courtroom argument a moot point in the market.
Protocols for Using Human Fibroblasts Expressing Human bFGF as Feeder Cells for iPSCs
New Product of the Week: Anti-GFP Polyclonal Antibody 100ug ABP-PAB-PAGFP10 $175.00.
Allele Biotech has introduced the highly efficient GFP-Trap for GFP fusion protein pull-down, and a monoclonal anti-GFP antibody for detecting GFP-fusion proteins after Immunoprecipitation with GFP-Trap. Just launched this week, the anti-GFP polyclonal antibodies provide an alternative method for analyzing the isolated proteins.
Pre-announcement: Allele Biotech will launch a FAQ and a User Forum online where you can also find common protocols in focus areas and exchange ideas with us or others.
1. Thaw one vial of irradiated feeder cells by swirling gently in 37oC water bath until all of the contents are thawed. One vial of 2×10^6 cells is sufficient to prepare two10-cm dishes, or two 6-well or 12-well plates (about 3-4×10^4/cm2).
2. Spray vial with 70% ethanol and wipe dry before placing in tissue culture hood.
3. Gently add 1 ml prewarmed feeder cell medium (alphaMEM or DMEM/F12 with 10% FBS), mix with contents of cryovial and transfer into 15-ml conical tube containing 4 ml prewarmed feeder cell medium.
4. Centrifuge the cells at 200g at room temperature for 5 min and discard the supernatant.
5. Resuspend the feeder cells in 12 ml feeder cell medium. If using a 6-well plate: add 1 ml of feeder cell suspension to each well of the 6-well plate containing 1 ml fresh feeder cell media per well. If using a 10-cm tissue culture dish: add 6 ml of feeder cell suspension to 10-cm tissue culture dish containing 6 ml fresh feeder cell media. If using a 12-well plate: add 0.5 ml feeder cell suspension to each well of 12-well plate containing 1 ml fresh feeder cell media per well. Gently shake the dish left/right and up/down 10-20 times without swirling the plate to evenly distribute the cells across the plate.
6. Incubate the cells in 37 1C, 5% CO2, overnight.
CRITICAL STEP When moving the feeder cell plates from the tissue culture hood to incubator, do not swirl the medium, as this tends to cause the cells to accumulate in the center. Immediately after placing the plates in the incubator, slide the plates forward and backward (2–3 cm) two times, then left to right (2–3 cm) two times to ensure equal distribution of the cells. Use within 5–7 days.
7. Split stem cells (~2.5 x 10^5 to 5 x 10^5 cells, or ~10% confluence) into plate with feeder cells: aspirate medium from ESC or iPSC, wash with PBS and add 0.5 ml of 0.05% trypsin. Incubate at 37oC, 5% CO2, for 5 min.
8. Inactivate trypsin with 3 ml stem cell medium (e.g. DMEM + 20% knockout serum replacement), and collect cell clumps in 15-ml conical tube avoiding making single cell suspension because ESC tends to die in single cell form.
9. Centrifuge at 200g at room temperature for 4 min.
10. Aspirate feeder medium from feeder plates (cells incubated in Step 6), rinse with one ml of stem cell medium and add 5 ml of stem cell medium and return to incubator.
11. Aspirate and discard supernatant from the conical tube in Step 8, resuspend cells in 5 ml stem cell medium, gently dispense the cell pellet three times, add to feeder cell wells or dishes.
12. Incubate stem cells grown on feeder cells at 37oC, 5% CO2, for 48 h.
13. Aspirate medium and replace with stem cell medium every day; if iPSC colony number is low, replace medium every two days.
FAQ About Feeder Cells for Stem Cells –Part One
The cost of preparing feeder cells for induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) is mainly due to 1. serum and media, 2. labor for growing and treating cells, and 3. expenses for freezing media and vials. Ready-to-use feeder cells saves one important labor-intensive step of iPSC generation, it should be an important help for iPSC and stem cell researchers. We know that most of our colleagues are tired of preparing fresh early passages of MEFs and treating them with expensive mitomycin C or finding an irradiator to pre-treat the MEFs. A lot of iPSC researchers lost iPS stem cells due to the lack of patience in handling MEF feeders. The offering of Allele’s feeder cell product line is really an easy solution and convenience to iPSC researchers.
Question 1: There are companies offering drug-resistant feeder cells such as MEF cells expressing neo-, puro-, or hygromycin-resistance genes. Is it important to have such drug-resistance genes when choosing feeder cells?
Adding drug resistant markers to these cells should not be necessary because iPSCs grown on feeder cells are usually not cultured in antibiotics-containing medium. The feeder cells will not be selected by drug resistance nor will they contaminate iPS cells since they can not propagate after irradiation. However, for those who do need to use drug selection for any reason, we will provide drug-resistant feeder cells upon request.
Question 2: There are publications showing the use of cells lines as feeder cells instead of primary fibroblasts, e.g. SL10, MRC-5, STO. Are there any advantages of using these cell lines?
Not really. Handling primary cells requires certain amount of experience and may be tedious; using cell lines, on the other hand, would be easier for preparing feeder cells. We provide feeder cells from immortalized early passage human foreskin fibroblasts at prices often lower than those from cell lines.
Question 3: Should I choose fluorescent protein expressing feeder cells for easy separation from iPSCs?
You do not need to include fluorescent protein in feeder cells, as feeder cells are quite different in morphology from iPS cells or ES cells. In fact, many labs use iPS factors that are co-expressed with fluorescent markers, in which cases feeder cell expressed fluorescent proteins will confuse the readout.
Question 4: What are the main advantages of using bFGF-expressing feeder cells?
Our bFGF-feeder cells not only eliminate the needs for added recombinant bFGF to stem cell cultures, but also form very nice cell lawn to serve iPSC colony formation because of their strictly controlled passage and growth conditions. We have used these cells without coating dishes with gelatin and obtained nice iPSC colonies.
Preview: Next Part of FAQ on Feeder Cells: choosing mouse or human fibroblasts, selecting iPSC colonies…
Announcement: An audience-orientated User Forum will be added to Allele Biotech webpages so that people can freely discuss or review products and technologies. A distilled version of discussions will be presented in a related but separate FAQ section, which will also include all Allele eNewsletters sent to our contacts about every quarter. Look for the links on www.allelebiotech.com in coming weeks.
Nobel Prize in Medicine Awarded to Discovery of Telomere and Telomerase
Elizabeth H. Blackburn, Carol W. Greider and Jack W. Szostak are credited with discovering how telomeres work and the function of telomerase. “As cells divide, chromosomes need to be replicated perfectly. Work by the researchers determined that telomeres protect DNA from degradation in the process, and that telomerase maintains the telomeres,” as reported by CNN.
Carol Greider was a student of Blackburn, and Szostak collaborated with the Blackburn group 20 years ago and has since left that field. Still remember going to Blackburn’s seminar as part of the molecular biology seminar series at USC in the early 90’s, and reading Szostak’s papers on aptamer selection while designing RNA aptamer selection schemes (SELEX) to find substrates of pre-mRNA splicing factors.
By JW
Product related note: Human telomerase gene TERT is provided on lentiviral vectors to increase efficiency of generating iPS cells.
Introducing Baculo Virus Expression System (BVES) with a Strong IRES
Internal ribosome entry site (IRES) can be used to initiate translation of a second open reading frame (ORF) of an mRNA, providing the benefits of: 1) avoiding promoter competition in a dual promoter situation; 2) having controlled ratio of expression of two proteins; 3) placing a dominant selection pressure on the entire bicistronic mRNA and hence the maintenance of the transgene when a selection marker is placed as the second ORF.
IRES elements are located mainly in RNA viruses except certain mammalian and insect mRNA molecules. Only one DNA virus has so far been found to contain an IRES, the while spot syndrome virus (WSSV) of marine shrimp. This IRES, compared to a very few other choices known to function in insect cells such as the IRES from Rhopalosiphum padi virus (RhPV), has strong translation initiation activity (~98-99% in reference to cap-dependent initiation), insect cell specificity, and encompasses only 180 base pairs.
Allele Biotech, with its acquisition of Orbigen, is a major provider of BVES products and services with more than 10 years of experience. Allele’s featured New Products of the Week* this week are WSSV IRES containing baculovirus vectors, the sIRES (for Strong IRES from Shrimp virus) series plasmids. Currently one version is pOrb-MCS-sIRES-VSVG for pseudotyping baculoviruses (within the Emerald Baculovirus for Mammalian Expression series), with pOrb-mWasabi-sIRES-VSVG as a fluorescent protein control; the other is pOrb-MCS-sIRES-MCS for cloning a custom second cDNA. New versions in the future will include IRES driven mWasabi and other commonly used selection markers.
With a current research project for the National Cancer Institute (NCI) within the National Institutes of Health (NIH) involving development of modified BVES and mammalian protein expression and purification systems, Allele Biotech expects this product line to continue its expansion at a fast pace.
* Allele Biotech announces at least one new product every Wednesday through news release at AlleleNews or Allele Blog and social networks.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008