c-myc
Expression of iPS Factors from Transfected mRNA
Differentiated cells can be reprogrammed to pluripotency by enforced expression of certain combinations of stem cell-specific protein factors in them. The power of this method was first demonstrated by Yamanaka’s group using retroviruses carrying Oct3/4, Sox2, c-Myc, and Klf4. Alternative factors such as Lin28 and Nanog, and additional factors such as the human telomerase gene hTert and shRNA against p53 were also shown to contribute to reprogramming. From the very beginning it was realized that viral integration would pose a major problem in using the induced pluripotent stem cells (iPSCs) for clinical purposes. There have been multiple attempts to circumvent this problem by using non-integrating vectors such as plasmid, minicircle DNA, adenovirus, baculovirus, removable transposons, episomal DNA, or by introducing recombinant proteins with a transmembrane domain into target cells. From reports in the field and customer feedbacks it seems that retroviral or lentiviral systems are still the most efficient in reprogramming. mRNA is about the only option left unreported, until an article by Warren et al was published in Cell Stem Cell online recently.
From that report, it is clear that the reason that it took so long for RNA-induced iPSCs (RiPSCs) to appear in the literature was because synthetic mRNAs activate interferon responses in mammalian cells, reminding us of the early days of RNAi. The authors took a number of steps to reduce interferon responses, including adding a 5’-cap (actually a fairly standard step in in vitro transcription), using a phosphatase to remove 5’ triphosphates on uncapped mRNAs, and using modified C and U bases (5-methucytidine or 5mC and pseudouridine or psi) during T7 promoter-driven in vitro transcription. The prepared mRNA was then administered everyday for 17 days at an amount not clearly defined in the paper. The main benefit of this method is of course that there is no gene integration to alter the chromosome. The efficiency of the new method was also compared to using viral vectors and it was shown that 1.4% conversion efficiency was achieved vs retroviral systems’ 0.01% (although we have experienced better results using lentivirus, at least the 4-in-1 version).
The DNA templates used for in vitro transcription of the iPS factors were created by multiple PCR reactions and bridged ligation; it could also be done by other cloning strategies. For those excited about trying this new way of making iPSCs, the major hassle would be preparing modified mRNAs good and abundant enough for 17 consecutive transfections. Allele Biotech would like to provide custom services, before offering shelf products, for creating such mRNAs as the method sounds potentially very helpful to many researchers in the iPSC field.
- New Product of the Week 100410-101010:
pLICO-mWasabi (Promoterless FP Reporter Vector ), listed as product-on-demand, now available, ABP-HL-PE40010 $395.00.
- Promotion of the Week 100410-101010:
Barrier too high to start using virus? Allele lowers it for starters, $500 for bactulo virus protein production, and $300 retrovirus packaging. Code 100310VIVEC, email vivec@allelebiotech.com
LoxP 4-in-1 iPS Factor on Lentiviral Vectors for Efficient Reprogramming
Putting 4 iPS factors on one lentiviral vector, separated by 2A peptides, has appeared to be more efficient in generating iPS cells than having all 4 factors on individual viruses, at least in a number of cases. Stem cell-like colonies start to appear in about 2 weeks using Allele Biotech’s 4-in-1 lentivirus. In addition to the concerted effects from Oct3/4, Sox2, c-Myc, Klf4, it is also believed that the coordinated silencing of these factors after reprogramming help forming iPS colonies.
The 4-in-1 lentivirus from Allele Biotech contains loxP sites that can be used to remove the 4 cDNAs if so desired. For convenience, a new product kit is offered starting this week to include lenti-nCre in a kit with the 4-in-1 iPS viral products.
New Product of the Week 04-11-10 to 04-18-10: 4-In-One-Vector: Human OSKM Lentiviral Paticles (Oct3/4, Sox2, Klf4 and c-Myc) and Cre Lentiviral Particle kits, Cat # ABP-SC-LVI4IN1C1 or ABP-SC-LVI4IN1C5
Promotion of the Week 04-11-10 to 04-18-10: Single vial 4-in-1 is offered only this week. This product has been well established and validated, one of the reasons smaller packages are not normally offered. As a matter of fact, every batch of the 4-in-1 iPS lentivirus has been sold out.
Update note: Lentivirus inserts into the host chromosome, and is gradually being replaced by footprint-free reprogramming reagents, the best being Allele Biotech’s enhanced mRNA reprogramming factors that feature a patent-pending fusion gene.
Reprogramming Life
President Obama is expected to lift the ban on federal fund for embryonic stem cell research soon. However, that does not seem to be the hottest topic these days concerning stem cell research. In 2006, Shinya Yamanaka showed that mouse skin cells could be reprogrammed back into something called induced pluripotent stem (iPS) cells by introducing a handful of cDNAs using retroviral vectors. The process was later repeated in human cells and by other groups including those of Thomson and Melton, sometimes with a slightly different set of inducing cDNAs, or with chemicals or shRNA repressing the repressors of the inducer genes.
The iPS cells are not exactly the same as ES cells, and no animals have been created using iPS cells, but they are close enough to be of great interest to lots of people, particularly for basic research purposes. The method to create iPS by reversing chromosomal changes along differentiation pathways appears to be surprisingly simple, like erasing an old audio tape, there may still be acoustic information left if analyzed by the right equipment, but to most people it is as clean as new. You’d wish a few things in life could be reversed that easily!
For labs that are not already in the stem cell field but feel a need to get their feet wet, then they want reagents that are pre-assembled and pre-tested. Such reagents may include: iPS cultures, iPS inducing viral particles, antibodies to stem cell specific markers, cell assays, and even PCR primer sets (synthesizing hundreds of oligos used in the Yamanaka papers alone will take a lot time and unnecessary costs). That’s where a fast-moving, research-oriented company like Allele comes in. We will bring what we think as starter sets for you, and listen to what you think as needed as we along. The new iPS product line will be launched within weeks, hopefully coinciding with our brand new webpages for all our current product lines!
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008