CA company
Allele Publication Explains cGMP Generation of Induced Pluripotent Stem Cells
The discovery that adult somatic cells can be reprogrammed to pluripotent stem cells has given the biomedical community a powerful platform for personalized medicine. However, the translation of cell therapies from bench to bedside holds a significant challenge. Realizing the clinical potential for stem cells requires their production under current Good Manufacturing Practice (cGMP) regulations enforced by the FDA. A new protocol (http://onlinelibrary.wiley.com/doi/10.1002/cpsc.18/abstract) published by scientists at Allele and detailed in this quarter’s issue of Current Protocols in Stem Cell Biology, reveals key conditions required for converting adult fibroblasts to induced pluripotent stem cells (iPSCs) under cGMP regulations.1
The patent-pending protocol is an update to a previous protocol that describes how to reprogram fibroblasts to iPSCs using mRNA. “The system of using mRNA to reprogram fibroblasts presents itself as a very favorable candidate for generating iPSCs for cell therapy” according to the senior author of the paper and CEO of Allele, Dr. Jiwu Wang, “our company is committed to developing stem cell based therapies using this protocol and through the establishment of our own stem cell GMP facilities here in California”. mRNA transfection is “footprint free”, meaning no insertions or alterations have been made to the genome. Transfection of mRNA is also “cleanup free,” because mRNA transcripts are supplied to the cells in the culture medium only for the time required to induce pluripotency. Furthermore, genomic analyses of iPSCs reprogrammed using mRNA indicate that this method of conversion is unlikely to introduce problematic mutations.2
The new version of the protocol describes reprogramming technology that utilizes all cGMP-certified reagents and vessels, meaning that every material is manufactured under guidelines that allow for ancillary use in manufacturing processes related to cell therapy. All materials described in the protocol – from cell medium and components to the coating for tissue culture plates – were meticulously evaluated at every step of generating and storing iPSCs. For truly cGMP produced cell lines, all processes should take place in certified cleanrooms with qualified equipment and thoroughly trained operators.
Establishing a cGMP process for any product intended for human use is a daunting undertaking. Unlike drugs and small-molecule pharmaceuticals, stem cells are living entities whose production cannot be chemically synthesized. Therefore, special considerations must be made – particularly for making individual cell lines – to help assure the highest safety and quality of downstream stem cell products. Adhering to cGMP regulations infuses high quality into the design and manufacturing process at every step. Through rigorous testing, researchers at Allele have identified critical parameters for generating iPSCs from fibroblasts that are cGMP-compliant, and are optimistic that the methods described in this recent publication will serve as a launch pad for the development of future cell products and therapies.
- Ni Y, Zhao Y, Warren L, Higginbotham J, Wang J. cGMP Generation of Human Induced Pluripotent Stem Cells with Messenger RNA. Current Protocols in Stem Cell Biology,2016; 39:4A.6.1-4A.6.25.
- Bhutani K, Nazor KL, Williams R, et al. Whole-genome mutational burden analysis of three pluripotency induction methods. Nature communications. 2016;7:10536.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008