cancer treatment
DNA Repair Pathway Factors in Cell-Based Screening for Restoring Patients’ Sensitivity to Cancer Therapies
Cancers undergoing therapies may develop resistance to treatment. Many current cancer treatments, such as cisplatin, function by creating DNA damage, particularly to fast-dividing cells, i.e., most cancer cells. These treatments may be rendered ineffective by DNA-damage response pathways. Cancer resistance to therapies may come from increased activity in nonhomologous end joining, decreased functions of mismatch repair, or reactivation of the Fanconi anemia (FA)/BRCA DNA-damage response pathway, etc. Ironically the loss of function of some of these DNA-damage repair factors may have partially caused the cancer formation in the first place. Regaining their functions in cancer cells possibly contribute to drug resistance. Molecules that disrupt FA/BRCA pathway or other DNA-damage responses could be used to help restore therapy sensitivity.
Like many proteins that function in DNA-damage repair complexes, FANCD2, a member of the FA pathway factor group, is targeted towards chromatin following damage to DNA in a process called foci formation. There have been recent studies that monitored the foci formation of GFP-FANCD2 in small molecule library screening and identified inhibitors to FANCD2 as candidates for a cancer therapy sensitizer. The assays can be improved in a number of ways. There are fluorescent proteins (FPs) that are much brighter than EGFP for increased sensitivity. For instance, the monomeric green FP mWasabi is about 2-3 fold brighter than EGFP, with narrower emission peak, and is more stable under acidic environment. The newly developed lancelet YFP (LanYFP, developed/introduced by Allele Biotech) is astonishingly 10 times brighter than EGFP. Since it has a longer excitation and emission wavelength, it should inherently have a better signal to noise/background ratio compared to EGFP because cells autofluoresce less in long wavelengths. The improved brightness would also help in this respect. The fold difference between foci and LanYFP background will be the same as EGFP, but the contrast will still probably be better because of less autofluorescent background and significantly higher fluorescence reading in foci.
Other factors that may be used as a screening target when fused to effective FPs may probably include:
1) Homologous recombination (HR)
a. End Resection
MRN complex (MRE11, RAD50, NBS1)
CtIP, RPA, ATM, ATR, Exo1, BLM, RMI1, TopIIIa, DNA2, BRCA1
b. Synapsis
RAD51, BRCA2, PALB2, RAD51B, RAD51C, RAD51D, RAD51AP1, XRCC2, XRCC3, RAD54, RAD54B
c. DNA synthesis
DNA polymerase delta, PCNA
2) Nonhomologous End Joining (NHEJ)
Ku70/Ku80, DNA-PK, Ligase IV, XRCC4, XLF
3) Fanconi Anemia Pathway
FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FAAP100, FANCM, MHF, FAAP24, FANCD2, FANCI, FAN1, FANCN, FANCJ, FANCM
- New Product of the Week 101110-101710:
Puromycin-resistant versions of lanRFP (red fluorescent protein from lancelet) for mammalian expression, just became available this week. ABP-FP-RCNCS1P, ABP-FP-RNNCS1P
- Promotion of the Week 101110-101710:
30% off the brightest ever lancelet YFP, ABP-FP-YPNCS10, $349 reduced to $244.3 for this week’s orders only.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008