CDR
3 Ways of Making DNA Libraries through Oligo Synthesis
Pools of DNA molecules of related but non-identical sequences are often used for selecting cDNAs that encode polypeptides with desired functions (such as in antibody screening), or DNA segments as protein binding sites (through SELEX), or DNA molecules that can catalyze reactions (DNA enzymes or deoxyribozymes), etc. The most direct way of creating DNA libraries is to introduce mixed bases during the synthesis of the oligos that will be used in creating the libraries.
1) The most commonly used method of generating degenerate oligos is to use mixed phosphoramidites (aka amidites, the building blocks of oligo synthesis) at desired positions in an oligo, e.g. using “N” to incorporate dA, dC, dG, and dT nucleotides, or “Y” for pyrimidines, “R” for purines. Mixed base oligos from most oligo suppliers are simple to order (and at no extra charge from Allele and a few other sources). During automated chemical synthesis of oligos, the synthesizer consecutively adds dT, dA, dC, or dG in the case of “N” at a pre-set ratio (e.g.25% each). This procedure does not always result in expected usage of each amidite because different amidites have different coupling efficiency, and the order of addition may also bias against amidites that are added later.
2) Using mixed bases like in method 1) leaves little control to achieve ratios of codons for specific amino acids. On the other hand, by using trimer amidites, which can be used for adding 3 nucleotides in each synthesis cycle, one can create oligos encoding selected amino acids at pre-determined percentages. However, this procedure is difficult to perform because trimer amidites are bulky and hard to couple to the elongating oligo; any moisture present during synthesis would have even more severe adverse effects than with regular amidites. Trimer oligo synthesis projects cost several thousand dollars per oligo on materials alone, and the risk is quite high that the oligos would not turn out of desired properties and qualities. For commercial users, this process has another problem—it is patented.
3) Another method for making library oligos is the so called “split-and-pool”, which is particularly suitable for having diversified amino acids embedded in otherwise common sequences like the CDRs within antibody variable regions. The latest oligo we made last month was a ~72 nt oligo with 8 locations that have pre-determined composition of amino acids, i.e. 20% Ala, 10% Gly, 12% His, etc. The procedure took us about 8 hours and we estimated the cost to be about $1,000. The subsequent sequencing results confirmed that ~70% of the clones using this oligo have desired degeneracy, compared to a similar oligo made by a bigger oligo company, at only 40%. In addition, we did not see any stop codon interruptions or major abnormalities.
DNA pools can also be generated by error-prone PCR, or more specifically with overlapping PCR using degenerate primers. The bottleneck for a library screening is how to handle big enough a number of colonies to accommodate the population, e.g. 10e10, or at least 10e8 clones are needed for finding high affinity antibodies. The second critical point is to have a robust and consistent selection readout such as fluorescence in cell sorting.
New Product of the Week 090710-091310; loxP-mWasabi reporter T cells, email vivec@allelebiotech.com for details.
Promotion of the Week 090710-091310: 15% off our NEW purified fluorescent proteins (not plasmids); All Expressed from E.coli PROMOCODE: 090910FP
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008