direct reprogramming
Development of Cell Lines from iPSCs for Bioassays
The reprogramming of differentiated somatic cells to pluripotency holds great promise for drug discovery and developmental biology. Using immortalized cell lines for drug screening assays has its limitations, such as questionable relevance; and the use of primary cells is often hindered by supply difficulties. Thanks to pioneering work by the Yamanaka, Thompson, and other groups, the feasibility of creating iPSCs has generated an opportunity to provide cell lines with stem cell properties in a virtually unlimited supply [1, 2]. These cells can be derived into different cell types for specific assays, even with patient- or genotype-specific background. Technologies are being developed to produce re-differentiated cells of a number of lineages.
Take cardiomyocytes as an example. There are a number of conventional methods for inducing stem cells into cardiomyocytes: through embryoid body (EB) formation, co-culturing with visceral endoderm-like cell line (END-2), and monolayer caridomyocyte differentiation with defined growth medium and protein factors [3]. A recent publication showed that using appropriate concentrations of BMP4 and activin-A in BSA-containing medium cardiomyocytes might be achieved from iPSCs or ESCs in about 6 days [4].
Transdifferentiation, or direct reprogramming, by introducing a group of 3 cardiomyocyte-specific factors, investigators could directly program cardiac or dermal fibroblasts into cardiomyocyte-like cells [5]. Although much refinement and characterization of these directly reprogrammed cardiomyocyte-like cells, termed iCMs, will be needed before the process can become widely used, this work raised the possibility of quicker and perhaps more efficient ways of generating cells for assays. Similar transdifferentiation has resulted in induced neuron (iN) cells, also by introducing 3 tissue-specific transcription factors [6]. Therefore, it seems that by using defined combinations of tissue-specific transcription factors it is possible to generate cells of different tissue types. It is also possible that by using different, developmental stage-specific transcription activator sets, transdifferentiation can be conducted in a stepwise way and make sure cells at each step is pure. This strategy may be particularly attractive if its efficiency can be improved by the techniques developed for iPSC creation. After all, reprogramming to pluripotency and transdifferentiation to different tissue types must share certain mechanistic steps in their respective processes.
In addition, it has been reported that by briefly overexpressing the Yamanaka iPS factors and controlling growth conditions, mouse fibroblasts could be transdifferentiated up to 40% in 18 days without reversing back to pluripotency [7]. It would be interesting to see if by transient expression of iPS factors via mRNA then switching to cardiomyocyte-specific transcription factors, we can increase the efficiency for direct reprogramming. Use of chromatin-modifying chemicals that were already shown to directly reverse and alter cell fates might also be used to assist direct reprogramming. We believe that a systematic approach for studying these reprogramming aspects should benefit the iPS fields.
1. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
2. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
3. Vidarsson, H., J. Hyllner, and P. Sartipy, Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev, 2010. 6(1): p. 108-20.
4. Elliott, D.A., et al., NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods, 2011.
5. Ieda, M., et al., Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 2010. 142(3): p. 375-86.
6. Pang, Z.P., et al., Induction of human neuronal cells by defined transcription factors. Nature, 2011. 476(7359): p. 220-3.
7. Efe, J.A., et al., Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol, 2011. 13(3): p. 215-22.
New Products of the week: T7 RNA Polymerase, high quality for demanding in vitro transcription requirements.
Promotion of the week: GFP-Trap, buy 2 of any package and get 1 of equal or less value free. Use code FreeTrap, follow deals quickly on Facebook.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008