nAb: Camelid Antibodies

Record number of papers citing the GFP-Trap group products in 2011

The following are references in regards to GFP Trap published in the second half of 2011 (not a complete list); a high quality GFP-binding protein based on a single domain antibody derived from Camelids. It is characterized by a small barrel shaped structure (13 KDa, 2.5nm X 4.5 nm) and a very high stability (stable up to 70°C, functional within 2M NaCl or 0.5% SDS). With much greater stability, specificity, and affnity, GFP-Trap®, the recent addition to antibodies for immunoprecipitation, should make GFP the most suitable tag for immunoprecipitation assays.

For live PubMed links, view this version please.

Krastev, D. B., Slabicki, M., et al. (2011). A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nature Cell Biology. 13: 809-818. PubMed

Aboobakar, E. F., Wang, X., et al. (2011). The C2 domain protein Cts1 functions in the calcineurin signaling circuit during high temperature stress responses in Cryptococcus neoformans. Eukaryotic Cell. EC. 05148-05111v05141. PubMed

Uhrig, R. G. and Moorhead, G. B. G. (2011). Two ancient bacterial-like PPP family phosphatases from Arabidopsis thaliana are highly conserved plant proteins that possess unique properties. Plant Physiology. PubMed

Larance, M., Kirkwood, K. J., et al. (2011). Characterization of MRFAP1 Turnover and Interactions Downstream of the NEDD8 Pathway. Molecular & Cellular Proteomics. PubMed

Hattersley, N., Shen, L., et al. (2011). The SUMO protease SENP6 is a direct regulator of PML nuclear bodies. Molecular Biology of the Cell. 22: 78-90. PubMed

Rancz, E. A., Franks, K. M., et al. (2011). Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nature Neuroscience. 14: 527-532. PubMed

Palmer, C. S., Osellame, L. D., et al. (2011). MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO reports. 12: 565-573. PubMed

Pichler, G., Wolf, P., et al. (2011). Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. Journal of Cellular Biochemistry. 112: 2585-2593. PubMed

Mitchell, L., Lau, A., et al. (2011). Regulation of Septin Dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4. PLoS One. 6: e25336. PubMed

Engeland, C. E., Oberwinkler, H., et al. (2011). The cellular protein Lyric interacts with HIV-1 Gag. Journal of virology. JVI. 00174-00111v00171. PubMed

Wang, C. and Youle, R. (2011). Predominant requirement of Bax for apoptosis in HCT116 cells is determined by Mcl-1’s inhibitory effect on Bak. Oncogene. PubMed

Tulloch, L. B., Howie, J., et al. (2011). The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation. Journal of Biological Chemistry. 286: 36020-36031. PubMed

Sun, L. and Wang, C. C. (2011). The Structural Basis of Localizing Polo-Like Kinase to the Flagellum Attachment Zone in Trypanosoma brucei. PLoS One. 6: e27303. PubMed

Bouttier, M., Saumet, A., et al. (2011). Retroviral GAG proteins recruit AGO2 on viral RNAs without affecting RNA accumulation and translation. Nucleic acids research. PubMed

Matos, J., Blanco, M. G., et al. (2011). Regulatory Control of the Resolution of DNA Recombination Intermediates during Meiosis and Mitosis. Cell. 147: 158-172. PubMed

Nagel, C. H., Albrecht, N., et al. (2011). Herpes Simplex Virus Immediate-Early Protein ICP0 Is Targeted by SIAH-1 for Proteasomal Degradation. Journal of virology. 85: 7644. PubMed

Studencka, M., Konzer, A., et al. (2011). Novel roles of C. elegans heterochromatin protein HP1 and linker histone in the regulation of innate immune gene expression. Molecular and Cellular Biology.PubMed

Muehlen, S., Ruchaud-Sparagano, M. H., et al. (2011). Proteasome-independent Degradation of Canonical NFŒ?B Complex Components by the NleC Protein of Pathogenic Escherichia coli. Journal of Biological Chemistry. 286: 5100. PubMed

Galan, J. A., Paris, L. L., et al. (2011). Proteomic Studies of Syk-Interacting Proteins Using a Novel Amine-Specific Isotope Tag and GFP Nanotrap. Journal of the American Society for Mass Spectrometry. 1-10. PubMed

Chamousset, D., De Wever, V., et al. (2010). RRP1B Targets PP1 to Mammalian Cell Nucleoli and is Associated with Pre-60S Ribosomal Subunits. Mol Biol Cell. PubMed

Kovacs, E. M., Verma, S., et al. (2011). N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nature Cell Biology. 13: 934-943. PubMed

Boysen, K. E. and Matuschewski, K. (2011). Arrested oocyst maturation in Plasmodium parasites lacking type II NADH: ubiquinone dehydrogenase. Journal of Biological Chemistry. 286: 32661-32671. PubMed

Mortusewicz, O., Fouquerel, E., et al. (2011). PARG is recruited to DNA damage sites through poly (ADP-ribose)-and PCNA-dependent mechanisms. Nucleic acids research. 39: 5045. PubMed

Graewe, S., Rankin, K. E., et al. (2011). Hostile takeover by Plasmodium: reorganization of parasite and host cell membranes during liver stage egress. PLoS Pathogens. 7: e1002224. PubMed

Yang, X. D., Huang, S., et al. (2011). Distinct and mutually inhibitory binding by two divergent Œ?-catenins coordinates TCF levels and activity in C. elegans. Development. 138: 4255-4265. PubMed

Pollithy, A., Romer, T., et al. (2011). Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Applied and environmental microbiology. 77: 6165-6171. PubMed

Kozubowski, L., Thompson, J. W., et al. (2011). Association of Calcineurin with the COPI Protein Sec28 and the COPII Protein Sec13 Revealed by Quantitative Proteomics. PLoS One. 6: e25280. PubMed

Garcia-Gomez, J. J., Lebaron, S., et al. (2011). Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae. Molecular and Cellular Biology. 31: 4156-4164. PubMed

Van Damme, D., Gadeyne, A., et al. (2011). Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proceedings of the National Academy of Sciences. 108: 615. PubMed

Qvist, P., Huertas, P., et al. (2011). CtIP Mutations Cause Seckel and Jawad Syndromes. PLoS Genetics. 7: e1002310. PubMed

Labella, S., Woglar, A., et al. (2011). Polo Kinases Establish Links between Meiotic Chromosomes and Cytoskeletal Forces Essential for Homolog Pairing. Developmental Cell. PubMed

Harterink, M., Port, F., et al. (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nature Cell Biology. 13: 914-923. PubMed

Konopacki, F. A., Jaafari, N., et al. (2011). Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis. Proceedings of the National Academy of Sciences.PubMed

Chuhma, N., Tanaka, K. F., et al. (2011). Functional connectome of the striatal medium spiny neuron. The Journal of Neuroscience. 31: 1183-1192. PubMed

Jackson, B. R., Boyne, J. R., et al. (2011). An Interaction between KSHV ORF57 and UIF Provides mRNA-Adaptor Redundancy in Herpesvirus Intronless mRNA Export. PLoS Pathogens. 7: e1002138. PubMed

Tags: , , , , , , , , , , , , ,

Finding the Best Capture Reagents

As capture reagents, monoclonal antibodies are the most widely used reagents for specifically detecting and quantifying proteins due to their very high specificity. However, development of monoclonal antibodies is time-consuming and expensive. In addition, many antigens prove to be non-immunogenic or extremely toxic, and therefore cannot be used to generate antibodies in animals. Furthermore, the large size of monoclonal antibodies (150 kDa) may limit their use in cases where more than one binding reagent competes for space to recognize closely juxtaposed epitopes. These limitations could arguably be the biggest hurdles to using monoclonal antibodies as capture reagents for a systematic study of the complete human proteome or for clinical applications of advanced proteomics.

Therefore, alternative capture reagents with high specificity, high affinity, and flexible size and structure that can be easily and cost-effectively produced are urgently needed in order to accelerate proteomic research. Single-chain variable-fragment (scFv) antibodies have been commonly used as alternatives in this regard. scFv is comprised of only the light chain and heavy chain variable regions connected by a peptide linker and with a molecular weight of 27 kDa. Since scFv retains the antigen-binding site of the variable regions, it inherits the specificity of an intact antibody and affinity. In addition, scFv can be easily expressed in yeast or in E. coli with yields in milligrams per liter. scFv can be linked to Fc of desired species specificity and maintain binding properties. If necessary, there is also the option of converting scFv into other antibody formats such as Fab or full IgG by simple cloning steps. The converted antibodies can also be efficiently expressed and purified in yeast or E. coli.

More recently, single domain antibodies that exist in nature were discovered that can be as small as half the size of scFv, and judging from the available data, superior in binding capabilities to scFv or even traditional IgG antibodies. This type of affinity molecules, termed VHH isolated from camelid animals or nurse shark, can be highly expressed in E. coli, linked to a fluorescent protein marker, or chemically conjugated to HRP or other signal generating moieties through a one step reaction.

  • New Product of the Week 011011-011811:
  • Surface Bind gDNA for retrieving genomic DNA from Allele-in-One mouse tail lysate.

  • Promotion of the Week 011011-011811:
  • 15% off One step Genotyping (mouse tail lysis and PCR kits), use code 011011MT at shop.allelebiotech.com

    Tags: , , , , , , , , , , ,

    Camelid Antibodies

    When it was discovered that animals in the camel family produce antibodies with no light chains, the idea that a single-domain fragment can bind as well as a full 4-chain antibody formed a breakthrough. So far it has been a relatively less known one.

    Smaller antibody fragments have been tested for therapeutic uses because classical IgG antibodies are too bulky to penetrate tissues well, and very expensive to produce. Different combinations of antigen-binding variable regions are used, e.g. scFv, Fab, diabody, all to some degree of success. In comparison, the N-terminal domain of camelid antibodies, termed VHH domain (nanobody, VHH antibody), represents a naturally evolved, only 13-15 kD in size, fully functional target binding fragment with many advantages.

    The only other known species outside camelidae family that has heavy chain antibodies is particular cartilaginous fish, nurse shark. Although the arrangement of CDRs is somewhat different between the camel and shark heavy chain variable regions, they share many characteristics such as extremely high stability (maintaining functions after100 C heat and extreme pH treatment).

    Accumulating reports have demonstrated the therapeutic potentials of camelid antibody-based fragments in treating cancer, neural diseases, even use in hair dandruff preventing shampoo. For basic research, the tiny antigen binders can be used as tools for quantitative pull down with unmatched efficiency, recognizing previously inaccessible enzyme cleft as antigens, and providing libraries for binding partner selection.

    Allele Biotech has been working on display antibody selection from its early days through an NIH grant, and recently carried out an NIH/NCI contract for scFv yeast display.

    Check out Allele’s current Camelid antibody products: http://www.allelebiotech.com/allele3/CM.php

    Tags: , , , , , , , , , , , , , , , ,