pol III promtoer
RNAi Therapy Mediated by Linear DNA Cassettes
RNA interference (RNAi) has been demonstrated to be a powerful tool to silence gene expression. Therapies based on RNAi are being developed in numerous application areas at fast paces. Although in basic research both expressed and synthetic double-stranded RNA molecules are broadly used to induce gene silencing, synthetic small interfering RNAs (siRNAs) are deemed easier to deliver in preclinical and clinical studies. Compared to synthetic siRNAs, DNA cassettes that express small hairpin RNA (shRNA), microRNA (miRNA), or strands of siRNAs have advantages of prolonged effects.
RNAi-expressing DNA cassettes have been incorporated into viral and non-viral vectors for delivery. Viral vectors for RNAi carry the same risks as those for gene therapies, and are currently not the method of choice for human therapies. Non-viral DNA molecules, often in the form of plasmids, can be easily created and reproduced, but their efficacy is hindered by delivery barriers at the tissue, cell, and the nucleus levels. These difficulties are in part due to the plasmids’ large size, presence of antibiotic resistance genes, and immuresponse-generating CpG islands created in bacteria during propagation.
One way to alleviate these difficulties with non-viral DNA vectors for RNAi is to use linear DNA cassettes. Linear DNAs traverse nucleopores efficiently. The DNA molecules can be conveniently produced by PCR reactions without going through production in bacteria, avoiding DNA modifications such as CpG motifs and the need for replication origin or drug-resistance genes. Linear DNA encompassing a promoter, coding region, and poly(A) signals has been used for protein production. Similarly, by incorporating a miRNA cassette into linear transcription unit driven by a Pol II promoter was used to express RNAi for inhibiting HBV (Chattopadhyay et al. (2009). There are now available technologies and commercial services (e.g. Vandalia Research, Inc.) to produce therapeutic grade linear DNA by specialized PCR reactions.
Allele Biotech’s patents on DNA-expressed RNAi provide a platform for highly express shRNA or siRNA from a DNA molecule as short as fewer than 200 basepairs, potentially more suitable for large scale production, and even more efficient transduction trough tissue, cell membrane, and nuclear pores than the large linear cassettes used by Chattopadhyay et al. A set of experiments similar to the cited HBV studies could quickly lead to the validation of a possibly the most effect way yet for RNAi therapeutics.
- New Product of the Week 091310-091910:
LoxP-GFP Human T Cells as a reporter cell line for Cre activity. ABP-RP-TGFPLOX, 1 vial $295.
- Promotion of the Week 091310-091910:
Validated GFP Expression Lentiviral Particles, ABP-RP-TLCGFPS $225.00, $25 off this week only, with an option to receive concentrated virus (10e10 TU/ml, 10 ul volume) at no additional charge! Follow us on Facebook and get the weekly promotion early.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008