pull down
When Great is not Good Enough—VHH Antibodies Engineered for 10 Fold Affinity Increase
Single Domain antibodies (VHH fragments, nanobodies, or as we call them, nAbs) have been generated by injecting llamas with ligand-bound GPCR for the purpose of obtaining crystals of active-state structures. Such structural information could be critical in understanding drug functions and screening for new drugs. The unique ability of VHH fragments to fit into protein-protein complex crevices and hold proteins together was demonstrated by two Nature publications from Brian Kobilka’s group at Stanford ([1, 2], also see Allele Newsletter of Sep 4th, 2013). The nano antibody used in those studies, Nb80, showed affinity towards only the active state of the target GPCR.
However, even with an antibody as great as Nb80, the authors were only able to co-crystal GPCR beta2-adrenoceptor (b2AR) with high affinity agonists, not its natural agonists such as adrenaline. In yet another Nature paper published just now, the Kobilka lab showed that Nb80 could be further improved by 10 times in affinity, through in vitro evolution [3]. They presented Nb80 on the surface of yeast using an existing yeast display system, then applied standard limited mutagenesis and magnetic separation technologies for screening. After about 5 rounds of selection, a new version of VHH Nb6B9 was isolated that bound to ligand-loaded GPCR with a kD of 6.4 nM. For the first time, a co-crystal of b2AR-adrenoline was made.
Rasmussen et al. Nature, 2011 Structure of a nanobody-stabilized active state of the b2 adrenoceptor
Rasmussen et al. Nature, 2011 Crystal structure of the b2 adrenergic receptor–Gs protein complex
Ring et al. Nature, 2013 Adrenaline-activated structure of b2-adrenoceptor stabilized by an engineered nanobody
Update here http://www.allelebiotech.com/nab
17 Papers Using GFP-Trap, 12 Since 2009
1. MacKay C, Déclais AC, Lundin C et al. (2010). Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142:65-76.
2. Babiano R, de la Cruz J. (2010). Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2010 Apr 14.
3. Fulcher AJ, Dias MM, Jans DA. (2010). Binding of p110 retinoblastoma protein inhibits nuclear import of simian virus SV40 large tumor antigen. J Biol Chem. 285:17744-53.
4. Taniue K, Nishida A, Hamada F et al. (2010). Sunspot, a link between Wingless signaling and endoreplication in Drosophila. Development. 137:1755-64.
5. Rottach A, Frauer C, Pichler G et al. (2010). The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Res. 38:1796-804.
6. Boulon S, Ahmad Y, Trinkle-Mulcahy L et al. (2010). Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners. Mol Cell Proteomics. 9:861-79.
7. Schornack S, Fuchs R, Huitema E et al. (2009). Protein mislocalization in plant cells using a GFP-binding chromobody. Plant J. 60:744-54.
8. Fellinger K, Bultmann S, Rothbauer U et al. (2009). Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep. 10:1259-64.
9. Muñoz IM, Hain K, Déclais AC et al. (2009). Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell. 35:116-27.
10. Webby CJ, Wolf A, et al. (2009). Jmjd6 Catalyses Lysyl-Hydroxylation of U2AF65, a Protein Associated with RNA Splicing. Science. 325:90-93.
11. Rogowski K et al. (2009). Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell. 137: 1076-87.
12. Frauer C, Leonhardt H, (2009) A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding. Nucleic Acid Res. 35: 5402-5409.
13. Trinkle-Mulcahy L et al., (2008) Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol. 183: s223-39.
14. Rothbauer U, Leonhardt H, (2008) Connecting Biochemistry and Cell Biology with Nanobodies. Zellbiologie aktuell 34: 9-12.
15. Rothbauer U et al., (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 7: 282-289.
16. Agarwal N et al., (2007) MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acid Res.35: 5402-5409.
17. Rothbauer U et al., (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3: 887-889.
New Product of the Week 071910-072510: Cre Reporter Cell Line: LoxP-RFP Human Fibroblast, perfect to test our Cre-2A-GFP lentivirus, when cre works, the cell change from red to green.
Promotion of the Week 071910-072510: High Quality dNTP Mix, 10mM, 5 ml, $409 this week $309. Hurry, email to oligo@allelebiotech.com or fax 858-587-6692 by Sunday to save $100 on your lab budget.
Camelid Antibodies
When it was discovered that animals in the camel family produce antibodies with no light chains, the idea that a single-domain fragment can bind as well as a full 4-chain antibody formed a breakthrough. So far it has been a relatively less known one.
Smaller antibody fragments have been tested for therapeutic uses because classical IgG antibodies are too bulky to penetrate tissues well, and very expensive to produce. Different combinations of antigen-binding variable regions are used, e.g. scFv, Fab, diabody, all to some degree of success. In comparison, the N-terminal domain of camelid antibodies, termed VHH domain (nanobody, VHH antibody), represents a naturally evolved, only 13-15 kD in size, fully functional target binding fragment with many advantages.
The only other known species outside camelidae family that has heavy chain antibodies is particular cartilaginous fish, nurse shark. Although the arrangement of CDRs is somewhat different between the camel and shark heavy chain variable regions, they share many characteristics such as extremely high stability (maintaining functions after100 C heat and extreme pH treatment).
Accumulating reports have demonstrated the therapeutic potentials of camelid antibody-based fragments in treating cancer, neural diseases, even use in hair dandruff preventing shampoo. For basic research, the tiny antigen binders can be used as tools for quantitative pull down with unmatched efficiency, recognizing previously inaccessible enzyme cleft as antigens, and providing libraries for binding partner selection.
Allele Biotech has been working on display antibody selection from its early days through an NIH grant, and recently carried out an NIH/NCI contract for scFv yeast display.
Check out Allele’s current Camelid antibody products: http://www.allelebiotech.com/allele3/CM.php
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008