retrovirus
How to order virus packaging service
Step 1: Please review the following before ordering Allele’s retrovirus packaging service.
Verify that your plasmids for virus production meet the following criteria:
No internal polyA signal or polyA signal immediately downstream of the coding cistron.
Avoid toxic genes, unusual secondary structures, and expression cassettes > 8kb (5’ to 3’ LTR).
If these concerns can not be satisfied in your vector design, please contact our technical specialist (vivec@allelebiotech.com) for further discussion, as Allele’s proprietary packaging technology might be able to help.
Step 2: Select the service:
Allele offers multiple project discounts: a 5% discount for ordering 3-5 packaging services, and a 10% for 6-10 packaging services.
Additional information can be found here.
Step 3: Send us 10 ug of endotoxin-free plasmid (blue ice shipping) for virus packaging.
To facilitate the completion of the custom virus packaging projects, Allele offers a variety of retro/lentivirus plasmids as well as viral plasmid subcloning and endotoxin-free plasmid preparation services. Please contact us (oligo@allelebiotech.com or 858-587-6645) for further details.
Once your order is placed, we will contact you about plasmid shipment and provide you with a time frame for completing the project.
Note: If the total project price is more than $1000, a non-refundable down payment (30% of the total service price) is registered before the project is initiated.
-
New Product of the Week 121310-121910:
pORB-ICAM/mWasabi-sIRES-VSVG for insect and mammalian cell expression of human membrane protein ICAM, validated and ready to ship. Email vivec@allelebiotech.com
-
Promotion of the Wee 120610-121310:
5% discount on high quality cell culture dishes manufactured by Phoenix Biomedical, email oligo@allelebiotech.com with code PH121310EC.
Features of Allele’s Virus Packaging Services
High Titer
Allele Biotech’s HiTiter™ Viral Packaging Services, using proprietary technologies that are unique and highly efficient, can easily yield 10e8 to 10e9 TU/ml lentivirus/retrovirus without concentrating steps. With a concentration step 10e9 to 10e10 TU/ml can be achieved, which is ideal for in vivo research. It’s the world’s most powerful viral packaging platform.
Quick Turnaround
Allele Biotech has consolidated its procedure of HiTiter™ Viral Packaging Services as a standard production-line resulting in a quick turnaround. Typically, a standard 10e8 TU/ml 2ml packaging service is completed in one week and delivered in less than two weeks. You send us virus transfer plasmids, wait a week or two, and receive high titer ready-to-use virus. Imagine how our ingenuity and innovation can pave the way for your research!
Ideal for Complicated Constructs
Viral packaging, especially for complicated constructs, has been intrinsically difficult for most researchers. Now with Allele Biotech HiTiter™ Viral Packaging Services, you have an ideal option for packaging even the most demanding constructs! We have successfully developed the 4-In-1 iPSC Generation Lentivirus, expressing 4 genes (hOct3/4, hSox2, hKlf4 and hc-Myc) in one lentiviral construct, which has been very popular in the filed of stem cell research.
Fluorescent Proteins & Drug Resistance
Allele Biotech and our collaborators design, evolve, and select new FPs that suit different applications. These brighter fluorescent proteins, sometimes together with drug resistance genes, have been incorporated into our lentiviral/retroviral systems. When you order our viral packaging service, you will automatically receive a 20% discount for all our listed viral plasmids.
Full RNA Interference Services
We have RNAi lentiviral packaging services, RNAi validation services, and RNAi screening services, which can meet different demands in the filed of RNA Interference. The RNAi lentiviral packaging services include Gene-To-Silence™, Sequence-to-Virus™ and DNA-to-Virus™. The plasmids we use for these services have build-in FPs and drug resistance genes, convenient for virtually all research purposes.
- New Product of the Week 111510-112110:
Cre/loxP Reporter Cell Line LoxP-lacZ Human Fibroblast, ABP-RP-CLACLOX.
- Promotion of the Wee 111510-112110:
Fine agarose for DNA or RNA gel, buy 500g, get a second bottle of agarose at 40% off, use promo code FB111510AR, order by emailing oligo@allelebiotech.com
Expression of iPS Factors from Transfected mRNA
Differentiated cells can be reprogrammed to pluripotency by enforced expression of certain combinations of stem cell-specific protein factors in them. The power of this method was first demonstrated by Yamanaka’s group using retroviruses carrying Oct3/4, Sox2, c-Myc, and Klf4. Alternative factors such as Lin28 and Nanog, and additional factors such as the human telomerase gene hTert and shRNA against p53 were also shown to contribute to reprogramming. From the very beginning it was realized that viral integration would pose a major problem in using the induced pluripotent stem cells (iPSCs) for clinical purposes. There have been multiple attempts to circumvent this problem by using non-integrating vectors such as plasmid, minicircle DNA, adenovirus, baculovirus, removable transposons, episomal DNA, or by introducing recombinant proteins with a transmembrane domain into target cells. From reports in the field and customer feedbacks it seems that retroviral or lentiviral systems are still the most efficient in reprogramming. mRNA is about the only option left unreported, until an article by Warren et al was published in Cell Stem Cell online recently.
From that report, it is clear that the reason that it took so long for RNA-induced iPSCs (RiPSCs) to appear in the literature was because synthetic mRNAs activate interferon responses in mammalian cells, reminding us of the early days of RNAi. The authors took a number of steps to reduce interferon responses, including adding a 5’-cap (actually a fairly standard step in in vitro transcription), using a phosphatase to remove 5’ triphosphates on uncapped mRNAs, and using modified C and U bases (5-methucytidine or 5mC and pseudouridine or psi) during T7 promoter-driven in vitro transcription. The prepared mRNA was then administered everyday for 17 days at an amount not clearly defined in the paper. The main benefit of this method is of course that there is no gene integration to alter the chromosome. The efficiency of the new method was also compared to using viral vectors and it was shown that 1.4% conversion efficiency was achieved vs retroviral systems’ 0.01% (although we have experienced better results using lentivirus, at least the 4-in-1 version).
The DNA templates used for in vitro transcription of the iPS factors were created by multiple PCR reactions and bridged ligation; it could also be done by other cloning strategies. For those excited about trying this new way of making iPSCs, the major hassle would be preparing modified mRNAs good and abundant enough for 17 consecutive transfections. Allele Biotech would like to provide custom services, before offering shelf products, for creating such mRNAs as the method sounds potentially very helpful to many researchers in the iPSC field.
- New Product of the Week 100410-101010:
pLICO-mWasabi (Promoterless FP Reporter Vector ), listed as product-on-demand, now available, ABP-HL-PE40010 $395.00.
- Promotion of the Week 100410-101010:
Barrier too high to start using virus? Allele lowers it for starters, $500 for bactulo virus protein production, and $300 retrovirus packaging. Code 100310VIVEC, email vivec@allelebiotech.com
Commonly Known Facts About Viral Packaging -That Might Not Be Correct…
Packaging lentiviruses or retroviruses is not a routine procedure that every biology lab performs even if there is need to use it. A viral packaging protocol normally begins with preparation of purified transfer plasmid DNA, a miniprep should be enough for a few transfections. The virus backbone plasmid is either co-transfected into commonly used cells with helper plasmids that provide the essential proteins required for particle packaging, or transfected into established helper cell lines that express the required proteins from integrated transgenes. After incubation of packaging cells for a couple of days, viruses are collected and tittered. Titer determination is somewhat tricky for the inexperienced. Using a control virus expressing a fluorescent protein can make this step convenient.
Commonly known facts:
1) Lentiviruses are packaged at a titer of 10^6 IU/ml without concentrating steps.
This needs update since with more advanced technologies lentiviruses can be packaged routinely at 10^8 IU/ml. With further concentrating, the titer can be easily above 10^11 IU/ml. Retroviruses can be packaged to similar titers as well.
2) Using packaging cell lines gives the highest possible titer
While packaging cell lines (such as Allele’s popular Phoenix Eco and Ampho cells for retrovirus packaging) provides maybe the most convenient method for packaging, the yield will not reach the highest potential. Packaging cell lines may also lose their capability for packaging after continued culturing, requiring periodic selection with antibiotics and functional tests, as we do here at Allele.
3) Retroviruses are always collected in one shot after transfection into packaging cells
If the transfer vector has oriP/EBNA1 episomal maintenance system, such as some of the Phoenix vectors Allele offers, the plasmids may continue to express for up to 30 days. With puromycin selection, the titer of retrovirus produced from Eco or Ampho cells can reach 10^7 IU/ml.
This week’s promotion (102509-103109): 10% off across the board of Allele Biotech’s custom services, for an example, check out our world-leading baculovirus protein expression.
New Product/Service of the Week: Introduction of Custom Viral Packaging Service. Routine titer of 10^8 IU/ml, as high as 10^10 IU/ml, option to include cloning. Signature service ABP-CS-MERV002 provides more than 200 million particles at $7/million particles. These are game-changing prices for the viral packaging service market based on superior technologies!
Retroviral Vectors with Integrated oriP/EBNA1 for IPSC
The new product of the week of Sep 21-27 is the retrovirus plasmid sets that contain a built-in episomal expression system. As we have discussed previously, OriP/EBNA1 system originated from Epstein-Bar virus, which allows the establishment of stable episomes at 5-20 copies per cell, and duplication once per cell division.
By using the oriP/EBNA1 episomal system, reprogramming cDNAs can be expressed at prolonged time period in reference to plasmid transfection, without integration into chromosomal DNA. A paper published in PLoS One on Sep 18, 2009 by Marchetto et al. showed that by using such a system (on different plasmids) the authors were able to create induced pluripotent stems cells (iPS cells,) effectively from human embryo neural precursor cells.
The Allele pCHAC-EBNA system has dual functions: it can be ready-to-use plasmids for episomal expression of Oct4, Sox2, c-Myc, Klf4, or Nanog and Lin28 by a simple transfection into target cells; it can also be packaged into retroviruses by transfecting into the Allele Phoenix Retrovirus packaging Eco or Ampho cells. This product group is officially launched today. It should become a highly convenient and unique tool for iPSC-related studies.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008