skin cancer
Do You Know How Well Your Sunscreen Works?
Skin diseases caused by sun exposure include melanoma, basal cell carcinoma, squamous cell carcinoma, photoaging, as well as sunburn and many other conditions. According to the Skin Cancer Foundation, skin cancer is the most common type of cancer in the US. The vast majority of mutations found in melanoma, according to a 2009 study published in Nature [1], are caused by UV radiation.
Currently, commercial sunscreens are composed of physical sunblocks including zinc oxide and titanium dioxide, and chemical UV (ultraviolet lights) absorbers/filters such as octinoxate for UVB and benzophenone for UVA. The compositions of commercial sunscreen products are disclosed by the manufacturer and regulated by the health product regulatory authorities such the FDA in the US. The UV absorbers/filters are organic chemicals that absorb UV lights within a very limited range of wavelength. Consequently, a combination of different chemicals is needed to achieve “broad-spectrum” protection.
Currently the FDA required test of effectiveness of UV protection measures only UVB, which means there is no way of knowing how effective a sunscreen product is against cancer-causing UVA and damaging visible lights [2]. Even though the life style changes in recent time result in more damaging light exposure such as extended sun bathing on beach or tanning in beauty saloons, etc., only 3 new sunscreen active components (and none of new chemical class) have been introduced to the US market in more than 3 decades. There seems to be a gap between the need and the effort for developing substantially improved skin protection products.
1. Pleasance, E.D., R.K. Cheetham, P.J. Stephens, D.J. McBride, S.J. Humphray, C.D. Greenman, I. Varela, M.L. Lin, G.R. Ordonez, G.R. Bignell, K. Ye, J. Alipaz, M.J. Bauer, D. Beare, A. Butler, R.J. Carter, L. Chen, A.J. Cox, S. Edkins, P.I. Kokko-Gonzales, N.A. Gormley, R.J. Grocock, C.D. Haudenschild, M.M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L.J. Mudie, Z. Ning, T. Royce, O.B. Schulz-Trieglaff, A. Spiridou, L.A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M.T. Ross, P.J. Campbell, D.R. Bentley, P.A. Futreal, and M.R. Stratton, A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 463(7278): p. 191-6.
2. Botta, C., C. Di Giorgio, A.S. Sabatier, and M. De Meo, Genotoxicity of visible light (400-800 nm) and photoprotection assessment of ectoin, L-ergothioneine and mannitol and four sunscreens. J Photochem Photobiol B, 2008. 91(1): p. 24-34.
New Product of the Week 080910-081510: Drug Resistance: pCHAC-MCS-IRES-NeoR, a new drug-resistant version of Allele’s retroviral vectors. ABP-PVL-IRES10N $325.00
Promotion of the Week 080910-081510: miRNA lentivirus packaging, $300 off listed price. Email vivec@allelebiotechl.com for details, with promotion code V080810.
Delivery of RNAi or Cre by Ultrasound-Guided Injection of High Titer Lentiviral Vectors
By Jiwu Wang
According to the Skin Cancer Foundation, skin cancer is the most common type of cancer in the US. Although the skin might seem to be an easy target for gene therapy or RNAi mediated functional corrections, the outer keratinized epithelial cells forms a formidable barrier to delivery of genetic material. The epidermis undergoes rapid turnover, a fact that further complicates gene therapy because gene transfer to skin stem cells would be required for sustained effects.
Before skin gene therapy can be discussed with any practical meaning, a physiologically relevant in vivo model for studying gene function in the context of tumorigenesis and epithelial biology must be established. Studies of gene functions in skin homeostasis in mouse models were mostly performed by labor-intensive knockout methods. Recently, at least two publications have shown that by using ultrasound-guided injection of lentiviruses into amniotic fluids, transgene or shRNA can be efficiently and specifically delivered to epidermis, including skin stem cells, creating a very attractive model for functional studies and therapeutic tests.
Localized injection of high titer lentiviral vectors has been widely used for studying genes in brain development and a few other areas. Instead of injection into animal tissues, Endo et al. injected tiny volume (nl) of high titer lentivirus (10e10 TU/ml) into amniotic cavities within a defined window of embryogenesis [1]. By following fluorescent protein markers (CFP, GFP, YFP, RFP), both Endo et al. and researchers from Elaine Fuchs group demonstrated high efficiency and specificity of delivery to epithelial cells, commonly resulting in multiple genomic insertions of the viral genome.
RNAi against alfa1-catenin was used by Beronja and colleagues as an example to show that loss-of-function analysis can be done rather easily using shRNA/FP bearing lentivirus [2]. nlCre was also delivered to embryos with loxP-flanked transgenes vs wildtype for conditional knockout studies. These new findings should open doors to various experiments and therapies concerning the health of the skin.
1. Endo, M., P.W. Zoltick, W.H. Peranteau, A. Radu, N. Muvarak, M. Ito, Z. Yang, G. Cotsarelis, and A.W. Flake, Efficient in vivo targeting of epidermal stem cells by early gestational intraamniotic injection of lentiviral vector driven by the keratin 5 promoter. Mol Ther, 2008. 16(1): p. 131-7.
2. Beronja, S., G. Livshits, S. Williams, and E. Fuchs, Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. Nat Med. 16(7): p. 821-7.
-
New Product of the Week
080210-080810: mTFP1-Mitochondria-neoR plasmid, a new drug-resistant version of Allele’s organelle markers
-
Promotion of the Week
080210-080810: Retroviruses expressing OSKM or OSNL set of iPS factors at $500 for order placed this week only for all Allele Facebook fans, others with code iPS0808 mentioned in order.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008