VHH 101
VHH Nanobodies in Superresolution Imaging and More
From the large number of recent publications using GFP-Trap beads, it appears that GFP-Trap is on the way to becoming one the most popular tags for co-IP thanks to its unparalleled “cleanness” of precipitated protein bands and its quantitative binding capabilities. As described previously, the antibody conjugated on the GFP-Trap beads is a single-domain antigen binding module from camelid single-chain antibodies. Termed VHH, this domain is only ~12 kD and can fit into structures that other types of antibodies cannot. We have successfully created VHH antibodies against a number of neural factors as a research project for the NIDA/NIH.
VHH antibodies are often called nanobodies as a result of their size (1.5 – 2.5nm) and binding affinity ( GFP-trap has a binding affinity of 0.59nM). In addition to their use for co-IP, VHH antibodies have proven themselves as a resilient tool for various other applications. Anti-GFP nanobodies, for example, are currently used to enhance the fluorescence of GFP (GFP-trap booster utilizes the same VHH binding antibody coupled to a fluorescent dye); others have used VHH antibodies that can insert into certain part of GFP to dim the fluorescence signal . More recently, Ries et al. published in Nature Methods that the anti-GFP nanobodies offered a simple and versatile method for super-resolution imaging (i.e. PALM)-previously super-resolution imaging requires photoconvertible fluorescent proteins (such as Eos, mClavGR2). With dye-conjugated nanobodies, generating fusions to these newer FPs is no longer needed, however, using the nanobody super-imaging method requires fixing and permeabilizing the cells.
When using anti-GFP VHH reagents you need to be aware that other fluorescent proteins can also be recognized, if they were derived from the avGFP (jellyfish GFP). Also, some GFPs are not recognized if they are from another species, or engineered such as our mWasabi. We are producing newer and brighter GFP/YFPs based on the lancelet YFP protein to offer alternative series that will not be cross-recognized by the GFP-Trap antibodies.
Categories
- Allele Mail Bag
- cGMP
- Customer Feedback
- Fluorescent proteins
- iPSCs and other stem cells
- nAb: Camelid Antibodies, Nanobodies, VHH
- Next Generation Sequencing (NextGen Seq)
- NIH Budget and You
- oligos and cloning
- Open Forum
- RNAi patent landscape
- SBIR and Business issues
- State of Research
- Synthetic biology
- Uncategorized
- Viruses and cells
- You have the power
Archives
- October 2018
- April 2018
- March 2018
- January 2018
- October 2017
- September 2017
- August 2017
- March 2017
- February 2017
- January 2017
- November 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- February 2016
- October 2015
- September 2015
- August 2015
- June 2015
- March 2015
- January 2015
- December 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- May 2012
- April 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- October 2008
- August 2008
- July 2008