VHH Nanobodies in Superresolution Imaging and More

From the large number of recent publications using GFP-Trap beads, it appears that GFP-Trap is on the way to becoming one the most popular tags for co-IP thanks to its unparalleled “cleanness” of precipitated protein bands and its quantitative binding capabilities. As described previously, the antibody conjugated on the GFP-Trap beads is a single-domain antigen binding module from camelid single-chain antibodies. Termed VHH, this domain is only ~12 kD and can fit into structures that other types of antibodies cannot. We have successfully created VHH antibodies against a number of neural factors as a research project for the NIDA/NIH.

VHH antibodies are often called nanobodies as a result of their size (1.5 – 2.5nm) and binding affinity ( GFP-trap has a binding affinity of 0.59nM). In addition to their use for co-IP, VHH antibodies have proven themselves as a resilient tool for various other applications. Anti-GFP nanobodies, for example, are currently used to enhance the fluorescence of GFP (GFP-trap booster utilizes the same VHH binding antibody coupled to a fluorescent dye); others have used VHH antibodies that can insert into certain part of GFP to dim the fluorescence signal . More recently, Ries et al. published in Nature Methods that the anti-GFP nanobodies offered a simple and versatile method for super-resolution imaging (i.e. PALM)-previously super-resolution imaging requires photoconvertible fluorescent proteins (such as Eos, mClavGR2). With dye-conjugated nanobodies, generating fusions to these newer FPs is no longer needed, however, using the nanobody super-imaging method requires fixing and permeabilizing the cells.

When using anti-GFP VHH reagents you need to be aware that other fluorescent proteins can also be recognized, if they were derived from the avGFP (jellyfish GFP). Also, some GFPs are not recognized if they are from another species, or engineered such as our mWasabi. We are producing newer and brighter GFP/YFPs based on the lancelet YFP protein to offer alternative series that will not be cross-recognized by the GFP-Trap antibodies.

Be Sociable, Share!

Tags: , , , , , , , , , , , ,

2 Comments to VHH Nanobodies in Superresolution Imaging and More

FloHi
May 7, 2013

Dear all,

I read the following paper:
http://www.nature.com/nmeth/journal/v9/n6/abs/nmeth.1991.html

I was wondering exactly what product I need to do super-resolution imaging in my GFP-protein tagged cardyomyoctes.

I would be grateful for detailed information.
Thank you so much
Regards,
Flo

blogadmin
June 28, 2013

You would need superresolution microscope, and preferably switching your GFP tag out and put mNeonGreen or mMaple in. See here for more information and contact info for more detailed response.

http://superresolution.allelebiotech.com/index.html

Leave a comment

You must be logged in to post a comment.