cell imaging

The Development of mNeonGreen

This week our most recent publication, “A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum” will be published in Nature Methods. It has already been viewable online for some time now, here is a link. We believe this new protein possesses a great deal of potential to advance the imaging fields through enhanced fluorescent microscopy. mNeonGreen enables numerous super resolution imaging techniques and allows for greater clarity and insight into one’s research. As a result of this we are taking a new approach at Allele for distribution of this protein, and here we will describe the history of the protein and some of the factors that led us down this path.

mNeonGreen was developed by Dr. Nathan Shaner at Allele Biotechnology and the Scintillon Institute through the directed evolution of a yellow fluorescent protein we offer called LanYFP. LanYFP is a super bright yellow fluorescent protein derived from the Lancelet fish species, characterized by its very high quantum yield, however, in its native state LanYFP is tetrameric. Dr. Shaner was able to monomerize the protein and enhance a number of beneficial properties such as photostability and maturation time. The result is a protein that performs very well in a number of applications, but is also backwards compatible with and equipment for GFP imaging.

Upon publication there was a question of how distribution should be structured. How would we make this protein available to researchers in a simple manner was a very difficult challenge? We also relied heavily on Dr. Shaner’s knowledge and experience in these matters, as he related his experiences to us from his time in Roger Tsien’s lab at UCSD. When the mFruits was published their lab was inundated with requests. The average waiting period was 3 months to receive a protein and they required a dedicated research technician to handle this process. Eventually the mFruits from the Tsien lab were almost exclusively offered through Clontech. Thus we decided that Allele Biotechnology would handle the protein distribution and take a commercial approach to drastically decrease the turnaround time. The next challenge we faced was how to charge for this protein. Due to the cost of developing this protein, which was fully funded by Allele, there is a necessity to recoup our investment and ideally justify further development of research tools, but we also understand the budget constraints every lab now faces. From this line of thinking we conceived our group licensing model; we wanted to limit the charge to $100 per lab. The way this is fiscally justifiable is having every lab in a department or site license the protein at this charge, including access to all related plasmids made by us as well as those generated by other licensed users (Click here for our licensing page). The benefit we see to this is that the protein is licensed for full use at a low cost, and collaboration amongst one’s colleagues is not only permissible, it’s encouraged. We saw this as a win-win situation. We would recoup our cost and invest in further fluorescent protein research, and our protein costs would not be a barrier to research and innovation.

The granting of a license to use but not distribute material is not unique to commercial sources. Although academic material transfer agreements typically contain specific language forbidding distribution of received material beyond the recipient laboratory, some researchers choose to disregard these provisions. Unfortunately through this action they are disrespecting the intellectual property rights of the original researchers as well as violating the terms of the legal contract they signed in order to receive the material. We believe most researchers choose to respect the great deal of effort that goes into the creation of research tools for biology and do not distribute any material received from other labs without their express permission. However for a company that funds its own basic research our focus is often on the former example rather than the latter. We believe that this focus artificially drives up the costs of licensing a fluorescent protein and obtaining the plasmid, thus we have chosen to believe researchers will respect our intellectual property as long as we are reasonable in our distribution which is something we have truly striven for.

Additionally we believe the broad-range usage of a superior, new generation FP is an opportunity to advocate newer technologies that can be enabled by mNeonGreen, together with a number of Allele’s other fluorescent proteins (such as the photoconvertible mClavGR2, and mMaple). These new imaging technologies are called super resolution imaging (MRI). They provide researchers with a much finer resolution of cellular structures, protein molecule localizations, and protein-protein interaction information. We have started the construction of a dedicated webpage to provide early adopters with practical and simple guidance, click here to visit our super resolution imaging portal.

Tags: , , , , ,

Monday, April 29th, 2013 Fluorescent proteins 3 Comments

mTFP1 is an excellent FRET donor

Because of its excitation and emission wavelength, sharp excitation and emission peaks, high quantum yield, and exceptional photostability, mTFP1 has always been considered a very good Forster resonance energy transfer (FRET) donor (1). More recently, several groups have investigated the use of mTFP1 in various FRET experiments and imaging modalities and have shown that mTFP1 is indeed one of the best choices (2, 3, 4).

In one recent publication, Padilla-Parra et al (2) tested a number of different FRET couples to determine which was the best for fluorescence lifetime imaging (FLIM)-FRET experiments, and found that the mTFP1-EYFP pair was by far the best pair for FLIM-FRET. This group also confirmed that the fluorescence lifetime decay of mTFP1 fits well to a single exponential, and that the time constant for this decay is unaffected by photobleaching, making mTFP1 an excellent choice for any kind of fluorescence lifetime imaging applications, including FLIM-FRET. This group also notes that it is likely that the use of Venus or mCitrine variants in place of EYFP would improve the performance of this FRET pair even further.

In a mathematical analysis of the potential FRET efficiency of mTFP1 with Venus YFP, Day et al. (3) showed that compared with Cerulean (currently the brightest cyan Aequorea GFP variant), one can expect up to 17% better FRET efficiency using mTFP1. This group went on to characterize the mTFP1-Venus pair in live-cell FRET and FLIM-FRET experiments and showed that it worked as predicted in both cases. They also note that mTFP1 has superior brightness and photostability when compared to Cerulean in live cells, which is consistent with all in vitro data reported previously (1). In a related paper, Sun et al. (4) demonstrated that mTFP1 is also an excellent FRET donor for the orange fluorescent protein mKO2.

Together, these recent independent studies confirm that mTFP1 among the best options when choosing a fluorescent protein as a FRET donor. With its proven track record of successful fusions, mTFP1 is also an excellent all-around performer that will enhance almost any live-cell imaging experiment.

(1) Ai et al., (2006) Biochem. J. 400:531-540.
(2) Padilla-Parra et al., (2009) Biophys J. 97(8):2368-76.
(3) Day et al., (2008) J Biomed Opt. 13(3):031203.
(4) Sun et al., (2009) J Biomed Opt. 14(5):054009.

AlleleBlog Admin, by Nathan Shaner

Video of the month (NEW!): Protein Expression Systems on youtube (http://www.youtube.com/watch?v=n81orbUebsQ) and at our protein expression page.

Discount of the week (Dec 14-20): 15% off Phoenix Retrovirus Expression System 2.0 (with selection medium provided)

New product(s) of the week: 48 fluorescent protein fusions on ready-to-infect virus that get into primary mammalian cells as subcellular markers (http://www.allelebiotech.com/shopcart/index.php?c=197&sc=34), 20 infections, only $249 for a limited introduction time.

Tags: , , , , , , , , , , , , ,

Tuesday, December 15th, 2009 Allele Mail Bag, Fluorescent proteins No Comments

Getting the most from fluorescent proteins

Fluorescent proteins (FPs) are an indispensable component of the biology toolbox, providing a robust and straightforward method to optically label nearly any protein of interest.

While most FPs can be used for a wide variety of experimental setups and conditions, getting the best quality data from your hard efforts requires some forethought. Here are a few tips to get the most out of FP imaging:

1.Reduce pre-measurement photobleaching.

All FPs photobleach upon exposure to excitation light. Some, like commonly used YFPs, bleach rather quickly, while others, such as Allele’s mTFP1, are substantially more photostable. However, even the most photostable FPs can be susceptible to excessive pre-measurement bleaching if precautions are not taken.

While searching for your favorite cell on the microscope, try to use the lowest possible excitation light intensity. Close the shutter when you’re setting up software or other experimental apparatus, and use short exposure times whenever possible during focusing.

2.Consider pH and other variables.

Most FPs are somewhat sensitive to acidic pH. Some, such as mTFP1 and many of the red FPs, are reasonably resistant to pH changes, while others, such as EYFP, are highly sensitive. If you’re imaging acidic compartments such as lysosomes or plant vacuoles, you’re unlikely to see any fluorescent signal if you’re using EYFP or any other pH-sensitive FP, so choose wisely!

Information on the fluorescence pKa (the pH at which 50% of the fluorescence emission is quenched) of new fluorescent proteins is generally easy to find, so do your homework!

3.Be careful with fusions and linkers.

One big advantage of using FPs is that they may be genetically fused to virtually any protein of interest. While FPs usually have a negligible effect on the properties of their fusion partners, it’s always a good idea to double-check and validate data on new proteins.

If you don’t know where your protein should localize, check both N- and C-terminal FP fusions to be sure they give the same results. If not, validate your localization by other methods, such as antibody staining. If you can devise a functional assay for your FP-labeled protein, this is also a good way to be sure the fusion isn’t causing trouble.

If you’re having problems with a particular FP fusion, try a few different linkers between the FP and the protein of interest. Floppy linkers, such as poly-(Gly-Gly-Ser-Gly-Gly-Thr) frequently work well, but occasionally rigid linkers (such as poly-proline) or other sequences will give better results. Unfortunately, the process of optimizing a fusion construct is largely empirical.If you can put in the effort early in your experiments to produce the best possible FP fusion, you’ll benefit greatly in later experiments!

Tags: , , , , , , ,

Monday, August 18th, 2008 Fluorescent proteins No Comments