redox sensor

Fluorescent Protein-Based Assay Development II

FPs as pH and redox sensors:

The uses of FPs extend well beyond simple expression and fusion reporters.  While pH sensitivity (usually quenching of fluorescence by acidic pH) is generally considered a drawback for fusion tagging, it becomes a useful property for constructing pH sensors.  FPs specifically engineered to take advantage of pH sensitivity (“pHluorins”) report pH as either a change in fluorescent intensity or a change in the ratio of excitation at two different wavelengths, and may be used to monitor processes such as endocytosis or other pH-variable processes.  In such an application, the pH-sensitive FP is fused to a localization tag for the compartment of interest which experiences variable pH.  This technique can be used, for example, to visualize release of neurotransmitter-containing vesicles.  In addition to pH-sensitive FPs, redox-sensitive Aequorea GFP variants have been produced (roGFPs and others) which produce similar changes in fluorescence intensity or excitation ratio when exposed to differing redox conditions or reactive oxygen species.

Sensors based on circularly permuted FPs:

Because FPs have such a compact and stable beta-barrel fold with N and C termini close together, it is possible to engineer circularly permuted variants which retain their fluorescent properties.  Studies on circular permutation of FPs have led to the development of several different sensors which take advantage of domains inserted into sensitive areas of the fluorescent protein backbone.  The most famous of these are the GCaMP calcium sensors, in which a calmodulin domain has been inserted into a loop in GFP, yielding a sensor that reports calcium concentration as a change in fluorescent intensity.  Other circularly permuted FP variants, such as cpVenus (a yellow Aequorea GFP variant), have found usefulness in improving FRET sensor dynamic range (see next section).

FRET sensors:

Fluorescence resonance energy transfer (FRET) is a quantum mechanical process that allows the transfer of excited state energy between two fluorophores when they are in close physical proximity.  Because this process operates with a strong distance (1/r^6) and orientation dependence (strongest when chromophore dipoles are parallel or antiparallel), it lends itself to the construction of highly sensitive reporters of biochemical activity.  In FP FRET, excited state energy from a higher-energy (shorter wavelength) “donor” fluorescent protein is transferred to a lower-energy (longer wavelength) “acceptor” FP, leading to sensitized fluorescent emission from the acceptor and reduced emission (quenching) from the donor.  By linking donor and acceptor FPs with a domain which changes conformation in response to a biochemical activity of interest, this activity is reported as a change in the ratio of sensitized emission to direct-excitation emission of the acceptor (or a simple ratio of donor and acceptor emission).  FRET sensors have been engineered to specifically sense a wide variety of activities, including many protein kinases, as well as small molecules such as Ca2+ and neurotransmitters.  While design of a new FRET sensor generally requires a great deal of optimization and trail-and-error, this class of probe is among the most powerful tools currently available for investigating live-cell biochemistry.

New Product of the Week 03-15-10 to 03-21-10: Oct4-Sox2 2-in-1 lentivirus ABP-SC-LVI2in1 for effective iPS generation link: http://www.allelebiotech.com/shopcart/index.php?c=132&sc=122.
Promotion of the Week 03-15-10 to 03-21-10: 5% off plate oligos at all scales! www.allelebiotech.com/allele3/Oligo_96Plate.php We are doing our “window promotion” again, during a hour-long window, get any Allele’s High efficiency competent cells at 30% regular price, the time will be announced tomorrow on our Facebook page.

Tags: , , , , , , , , , ,

Wednesday, March 17th, 2010 Uncategorized No Comments