Single Molecule Pulldown can be optimized with Allele’s Fluorescent Proteins

In the recent Nature paper, “Probing cellular protein complexes using single-molecule pull-down”, published May 26, 2011, researchers at the University of Illinois at Urbana-Champaign outline their findings for a new method for visualizing protein complexes through a single-molecule immunoassay which combines an antigen capturing chip and TIRF Microscopy. The SiMPull method captures protein complexes and the captured complexes are then visualized with fluorescent dyes or fluorescent protein tags. This is accomplished by using a microscope slide covered with biotinylated polyethylene glycol (PEG) and streptavidin bound to biotinylated antibodies. For single molecule visualization, multicolor labeling provides differentiation of subcomplexes and configurations.

The study includes two validation experiments, where study team members tagged their chosen complexes with YFP, in order to estimate YFP concentration after pulldown and subsequent imaging. They were then able to determine stoichiometric information in human kidney cells, from the isolated monomeric or dimeric YFPs, which exhibited the one and two-step decay responses.

Additionally, in another validation experiment, team members chose to use protein kinase A (PKA) because it’s two catalytic and two regulatory subunits separate in the presence of cAMP. This was accomplished by labeling the catalytic subunits of protein kinase A with YFP and the regulatory subunits with mCherry fluorescent protein. They then used a two-color SiMPull to pull down PKA. After pull-down they imaged the PKA in the presence of cAMP and without cAMP present. The YFP and mCherry signals fluoresced together, demonstrating that the catalytic and regulatory subunits were still attached to eachother. The YFP and mCherry signals did not correlate in the presense of cAMP, reaffirming the fact that the two subunits disassociate in the presence of cAMP.

Unlike other single-molecule pulldown techniques, the SiMPull does not require purified proteins. It also only requires about 10 cells of sample for protein pull-down and analysis, while traditional Western Blots require about 5000 cells. Moreover, This two-color SiMPull method could be further optimized yielding higher resolution overlay when used in combination with Allele’s mTFP1 and LanYFP, the brightest fluorescent proteins on the market.
The full article can be found at

New Product of the Week: High quality Anti-FLAG Monoclonal Antibody for detection or pulldown, ABP-MAB-DT006, $219/100ug.

Promotion of the Week: save 5% on all of our pre-packaged viruses. Our pre-packaged viruses are all titered at 10^8th or higher, and packaged in 5 tubes for your convenience. To redeem this offer email the code PREPACK to

Tags: , , , , , , , ,

Allele’s pallet of the super star fluorescent proteins

“Photoblog”–just some fun pictures from our notebooks.

    The brightest cyan, green fluorescent proteins, and the brightest ever FP in LanYFP!
The brightest cyan, green fluorescent proteins, and the brightest ever FP in LanYFP!

Ain't they pretty?

These fluorescent proteins are representatives of the growing family or high quality, new generation FPs engineered to enable experiment previously deemed impossible.

    Cells infected with lentivirus carrying mWasabi. Lentivirus carrying LanYFP will make most cells much more brighter than this.
2-3 times brighter than EGFP, no cytotoxicity detected

The mWasabi is stimulating

The brightest green fluorescent protein with excellent photostability, carried on 10e8 TU/ml high titer lentivirus.

    The LanFPs express well in bacteria.
Reminding you of icecream

The LanFPs express well in bacteria

Project planning is under way to test the cytotoxicity of lanFPs in different mammalian cell lines and in vivo with a focus on neurons.

    The FPs fold so strongly that they fluorescence even in SDS-PAGE.
Fluorescence while running in denaturing gel

Can you see the FP bands in the SDS PAGE?

    FPs in SDS PAGE–a closer look
while the gel is still running

Can you see them now?

    FPs in gel cassette over UV lights
Easier to see now than during gel running

Invincible FPs

    FPs in gel cassette under blue LED
The red FP is harder to see because of the black background

Fluorescence in SDS page under blue LED

The purified FPs can be used as “real time” protein markers.

New Product of the Week 07/26/10-08/01/10: pCHAC-mWasabi-C for expressing mWasabi fusion through retroviral vectors.

Promotion of the Week 07/26/10-08/01/10: Get 3′ TAMRA & BHQ oligo mods for $45 ea & 3′ Dabcyl mod for $20 50 nmol syn scale only/while supplies last- use dbtkrm0726

Tags: , , , , , , , , , , ,

Wednesday, July 28th, 2010 Allele Mail Bag, Fluorescent proteins No Comments

Monomeric Photoconvertible Fluorescent Protein for Imaging of Dynamic Protein Localization

Allele Biotech has just made a news announcement indicating that researchers from Dr. Campbell’s lab at the University of Alberta, Canada, and scientists at Allele Biotech Drs. Nathan Shaner and Jiwu Wang published a paper in the Journal of Molecular Biology on July 5th introducing a new photoconvertible fluorescent protein mClavGR.

The use of green-to-red photoconvertible fluorescent proteins (FPs) enables researchers to highlight a subcellular population of a fusion protein of interest and image its dynamics in live cells. In an effort to enrich the arsenal of photoconvertible FPs and overcome the limitations imposed by the oligomeric structure of the natural photoconvertible FPs, we designed and optimized a new monomeric photoconvertible FP. Furthermore, we have exploited mClavGR2 to determine the diffusion kinetics of the membrane protein intercellular adhesion molecule 1 (ICAM-1) both when the membrane is in contact with a T lymphocyte expressing leukocyte function-associated antigen 1 (LFA-1) and when it is not. These experiments clearly establish that mClavGR2 is well suited for rapid photoconversion of protein sub-populations and subsequent tracking of dynamic changes in localization in living cells.

Compared with previously available photoconvertible FPs, mClavGR2 has much improved photostability of the red state under confocal illumination conditions, 3644 over mEOS2’s 2700 and Dendra2’s 2420. Most notable among other advantages of mClavGR2 is its monomeric structure, its highly optimized and relatively rapid folding efficiency, and its high photoconversion effi ciency due to the high pKa of the green state. Its brightness in both the green and the red states is similar to the popular mCherry.

In regard to monomeric state, the monomeric variant of EosFP, known as mEos, was created through the introduction of two point mutations that disrupted the protein-protein interfaces of the tetrameric species. Expression of mEos at temperatures of greater than 30 °C is problematic, but an effectively monomeric tandem dimer variant does express well at 37 °C. mEos2 has been reported to retain some propensity for dimer formation.

We anticipate that this new addition to the toolbox of engineered FPs will be of great utility in imaging of fast protein dynamics in live cells. Experiments to determine whether the advantages of mClavGR2 translate to improved performance in super-resolution imaging applications have been initiated.

Hiofan Hoi(a), Nathan C. Shaner(b), Michael W. Davidson(c), Christopher W. Cairo(a), d, Jiwu Wang(b) and Robert E. Campbell(a)
a University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada T6G 2G2
b Allele Biotechnology, 9924 Mesa Rim Road, San Diego, California 92121
c National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310
d Alberta Ingenuity Centre for Carbohydrate Science
Received 20 February 2010; revised 15 June 2010; accepted 25 June 2010. Available online 5 July 2010.

New Product of the Week 070510-071110: mClavGR greeen-to-red photoconvertible fluorescent protein, catalogue number to be created

Promotion of the Week 070510-071110: Purified lanYFP, bright even in SDS-PAGE gel WITHOUT dye or excitation, great for in gel marker.

Tags: , , , , , , , , , ,

Wednesday, July 7th, 2010 Fluorescent proteins 5 Comments

BioTechniques Publishes Article on Single Domain Antibodies

Many blogs start by asking “Did you know…” to intrigue you to read along. So here it goes:

Did you know that there are more than 300,000 antibodies that are commercially available? And yes, many antibody companies are still generating more antibodies at ever faster pace and in a more systematic way. There are companies that plan to make peptide or short protein fragments for making antibodies against all human proteins or subproteome, others develop antibodies particularly suitable for demanding assays such as ChIP-CHIP. Government activities such as the National Cancer Institute (NCI)’s Clinical Proteomic Technologies Initiative (CPTI) and the Road Map program under the NIH Director’s Office also set goals of producing comprehensive sets of widely usable, renewable, affinity reagents for clinical cancer samples or the human proteome. Apparently people do not think the 300,000 available antibodies are sufficient for what they do.

Did you know that conventional antibodies commonly used as reagents are ~150kDa in molecular weight and can hardly be used inside live cells? Ulrich Rothbauer, professor in the department of biology at Ludwig Maximilians University, who is working with colleagues to develop tools to study cellular processes in living cells. “These antibodies have to assemble four different chains, two heavy and two light, and they’re assembled by disulfide bonds that cannot be correctly formed in the reducing environment of the cytoplasm. You cannot express such a huge complex molecule in living cells. You can [introduce] them by microinjection, for example, but it’s not applicable for high-throughput cell imaging.” [1] Antibody fragments such as scFv, Fab, and similar derivatives have been developed over the years to certain level of success, but not as widely accepted or practically amenable to replacing conventional antibodies.

Did you know that camel, llama, and shark naturally produce single heavy chain antibodies that can function as 13-16kDa fragments (yes if you have read previous Allele Blogs They can easily be produced in bacteria, used directly inside live cells via transgene, fused to other proteins as a fusion tag, linked to DNA oligos as a detection module, or immobilized on beads for pull down or co-IP. Currently, these antibodies need to be selected by display after obtaining immunized antibody libraries. There is generally no commercial service for creating custom camelid antibodies at this time due to patent and other issues. Existing products are available for jelly fish GFP and DsRed derived RFP fusions. Publications using such a limited number of camelid antibodies have been amazing so far—dozens in top journals within the last few months and after only a short period of time since product launch.

New Product of the Week 05-09-10 to 05-16-10: RFP-Trap for mCherry, mRFP1, mOrange, mPlum, and mRuby etc.

Promotion of the Week 05-09-10 to 05-16-10: Purchase our ThermoExp500 PCR Thermocycer for $4,650.00, and qualify for $200 off or for a $300 credit toward any other Allele Biotech product or service!

Original BioTechniques Article

Tags: , , , , , , , , , , , , , , , ,

Expanding the Camelid Antibody Product Line

While Chromotek GFP-Trap resin has become one of the best sellers from the Allele Biotech’ Camelid Antibody (VHH antibody) product line, more products have been added that will prove to be great tools for GFP-related research.

GFP is a powerful tool to study protein localization and dynamics in living cells. However, the photo stability and the quantum efficiency of GFP are not sufficient for Super-Resolution Microscopy (e.g. 3D-SIM or STED) of fixed samples from cells expressing GFP-fusion proteins to visualize specific structures. Furthermore, many cell biological methods such as HCl treatment for BrdU-detection, the EdU-Click-iT™ treatment or heat denaturation for FISH lead to disruption of GFP signal.

Now we offer our GFP-Trap Booster for reactivation, boosting and stabilization of GFP, suitable for acquiring strong and long lasting signals from GFP-fusion proteins. It is based on a specific GFP-binding protein as in GFP-Trap but coupled to the fluorescent dye ATTO 488 (from ATTO-TEC). For information, please read the product description of this week New Product of the Week: GFP-Trap booster, ABP-CM-GBOOSTR,

Promotion of the week: All mTFP1 and mWasabi fusion plasmids are 30% off for this week only

Preview of future new product: a similarly high quality product, the RFP-Trap that pulls down DsRed derived proteins including mRFP1, mCherry, mOrange, mPlum but also mRuby and RFP-tagged fusion proteins.

Tags: , , , , , , , , , , , ,