RFP-Trap

When Great is not Good Enough—VHH Antibodies Engineered for 10 Fold Affinity Increase

Single Domain antibodies (VHH fragments, nanobodies, or as we call them, nAbs) have been generated by injecting llamas with ligand-bound GPCR for the purpose of obtaining crystals of active-state structures. Such structural information could be critical in understanding drug functions and screening for new drugs. The unique ability of VHH fragments to fit into protein-protein complex crevices and hold proteins together was demonstrated by two Nature publications from Brian Kobilka’s group at Stanford ([1, 2], also see Allele Newsletter of Sep 4th, 2013). The nano antibody used in those studies, Nb80, showed affinity towards only the active state of the target GPCR.

However, even with an antibody as great as Nb80, the authors were only able to co-crystal GPCR beta2-adrenoceptor (b2AR) with high affinity agonists, not its natural agonists such as adrenaline. In yet another Nature paper published just now, the Kobilka lab showed that Nb80 could be further improved by 10 times in affinity, through in vitro evolution [3]. They presented Nb80 on the surface of yeast using an existing yeast display system, then applied standard limited mutagenesis and magnetic separation technologies for screening. After about 5 rounds of selection, a new version of VHH Nb6B9 was isolated that bound to ligand-loaded GPCR with a kD of 6.4 nM. For the first time, a co-crystal of b2AR-adrenoline was made.

Rasmussen et al. Nature, 2011 Structure of a nanobody-stabilized active state of the b2 adrenoceptor
Rasmussen et al. Nature, 2011 Crystal structure of the b2 adrenergic receptor–Gs protein complex
Ring et al. Nature, 2013 Adrenaline-activated structure of b2-adrenoceptor stabilized by an engineered nanobody

Update here http://www.allelebiotech.com/nab

Tags: , , , , , , , , , , , , , , ,

VHH Nanobodies in Superresolution Imaging and More

From the large number of recent publications using GFP-Trap beads, it appears that GFP-Trap is on the way to becoming one the most popular tags for co-IP thanks to its unparalleled “cleanness” of precipitated protein bands and its quantitative binding capabilities. As described previously, the antibody conjugated on the GFP-Trap beads is a single-domain antigen binding module from camelid single-chain antibodies. Termed VHH, this domain is only ~12 kD and can fit into structures that other types of antibodies cannot. We have successfully created VHH antibodies against a number of neural factors as a research project for the NIDA/NIH.

VHH antibodies are often called nanobodies as a result of their size (1.5 – 2.5nm) and binding affinity ( GFP-trap has a binding affinity of 0.59nM). In addition to their use for co-IP, VHH antibodies have proven themselves as a resilient tool for various other applications. Anti-GFP nanobodies, for example, are currently used to enhance the fluorescence of GFP (GFP-trap booster utilizes the same VHH binding antibody coupled to a fluorescent dye); others have used VHH antibodies that can insert into certain part of GFP to dim the fluorescence signal . More recently, Ries et al. published in Nature Methods that the anti-GFP nanobodies offered a simple and versatile method for super-resolution imaging (i.e. PALM)-previously super-resolution imaging requires photoconvertible fluorescent proteins (such as Eos, mClavGR2). With dye-conjugated nanobodies, generating fusions to these newer FPs is no longer needed, however, using the nanobody super-imaging method requires fixing and permeabilizing the cells.

When using anti-GFP VHH reagents you need to be aware that other fluorescent proteins can also be recognized, if they were derived from the avGFP (jellyfish GFP). Also, some GFPs are not recognized if they are from another species, or engineered such as our mWasabi. We are producing newer and brighter GFP/YFPs based on the lancelet YFP protein to offer alternative series that will not be cross-recognized by the GFP-Trap antibodies.

Tags: , , , , , , , , , , , ,

BioTechniques Publishes Article on Single Domain Antibodies

Many blogs start by asking “Did you know…” to intrigue you to read along. So here it goes:

Did you know that there are more than 300,000 antibodies that are commercially available? And yes, many antibody companies are still generating more antibodies at ever faster pace and in a more systematic way. There are companies that plan to make peptide or short protein fragments for making antibodies against all human proteins or subproteome, others develop antibodies particularly suitable for demanding assays such as ChIP-CHIP. Government activities such as the National Cancer Institute (NCI)’s Clinical Proteomic Technologies Initiative (CPTI) and the Road Map program under the NIH Director’s Office also set goals of producing comprehensive sets of widely usable, renewable, affinity reagents for clinical cancer samples or the human proteome. Apparently people do not think the 300,000 available antibodies are sufficient for what they do.

Did you know that conventional antibodies commonly used as reagents are ~150kDa in molecular weight and can hardly be used inside live cells? Ulrich Rothbauer, professor in the department of biology at Ludwig Maximilians University, who is working with colleagues to develop tools to study cellular processes in living cells. “These antibodies have to assemble four different chains, two heavy and two light, and they’re assembled by disulfide bonds that cannot be correctly formed in the reducing environment of the cytoplasm. You cannot express such a huge complex molecule in living cells. You can [introduce] them by microinjection, for example, but it’s not applicable for high-throughput cell imaging.” [1] Antibody fragments such as scFv, Fab, and similar derivatives have been developed over the years to certain level of success, but not as widely accepted or practically amenable to replacing conventional antibodies.

Did you know that camel, llama, and shark naturally produce single heavy chain antibodies that can function as 13-16kDa fragments (yes if you have read previous Allele Blogs http://allelebiotech.com/blogs/2009/08/camelid-antibodies/)? They can easily be produced in bacteria, used directly inside live cells via transgene, fused to other proteins as a fusion tag, linked to DNA oligos as a detection module, or immobilized on beads for pull down or co-IP. Currently, these antibodies need to be selected by display after obtaining immunized antibody libraries. There is generally no commercial service for creating custom camelid antibodies at this time due to patent and other issues. Existing products are available for jelly fish GFP and DsRed derived RFP fusions. Publications using such a limited number of camelid antibodies have been amazing so far—dozens in top journals within the last few months and after only a short period of time since product launch.

New Product of the Week 05-09-10 to 05-16-10: RFP-Trap for mCherry, mRFP1, mOrange, mPlum, and mRuby etc.

Promotion of the Week 05-09-10 to 05-16-10: Purchase our ThermoExp500 PCR Thermocycer for $4,650.00, and qualify for $200 off or for a $300 credit toward any other Allele Biotech product or service! http://www.allelebiotech.com/allele3/EQ.php

Original BioTechniques Article http://www.biotechniques.com/news/biotechniquesNews/biotechniques-257771.html?utm_source=BioTechniques+Newsletters+%2526+e-Alerts&utm_campaign=b94f127de0-Methods+Newsletter&utm_medium=email

Tags: , , , , , , , , , , , , , , , ,

Expanding the Camelid Antibody Product Line

While Chromotek GFP-Trap resin has become one of the best sellers from the Allele Biotech’ Camelid Antibody (VHH antibody) product line, more products have been added that will prove to be great tools for GFP-related research.

GFP is a powerful tool to study protein localization and dynamics in living cells. However, the photo stability and the quantum efficiency of GFP are not sufficient for Super-Resolution Microscopy (e.g. 3D-SIM or STED) of fixed samples from cells expressing GFP-fusion proteins to visualize specific structures. Furthermore, many cell biological methods such as HCl treatment for BrdU-detection, the EdU-Click-iT™ treatment or heat denaturation for FISH lead to disruption of GFP signal.

Now we offer our GFP-Trap Booster for reactivation, boosting and stabilization of GFP, suitable for acquiring strong and long lasting signals from GFP-fusion proteins. It is based on a specific GFP-binding protein as in GFP-Trap but coupled to the fluorescent dye ATTO 488 (from ATTO-TEC). For information, please read the product description of this week New Product of the Week: GFP-Trap booster, ABP-CM-GBOOSTR, http://www.allelebiotech.com/shopcart/index.php?c=221&sc=158

Promotion of the week: All mTFP1 and mWasabi fusion plasmids are 30% off for this week only

Preview of future new product: a similarly high quality product, the RFP-Trap that pulls down DsRed derived proteins including mRFP1, mCherry, mOrange, mPlum but also mRuby and RFP-tagged fusion proteins.

Tags: , , , , , , , , , , , ,

Choosing siRNA, shRNA, and miRNA for Gene Silencing

RNAi refers to dsRNA-induced gene silencing, a cellular process that degrades RNA homologous to one strand of the dsRNA [1, 2]. The intermediates of long dsRNA-initiated RNAi are double-stranded small interfering RNAs (siRNA), typically 21-23 nucleotide (nt) long. The siRNAs, when introduced into cells, can be used to silence genes in mammalian systems where long dsRNAs prompt protein kinase R (PKR), RNase L, and interferon activities that result in non-specific RNA degradation and general shutdown of protein synthesis [3]. siRNAs can either be chemically synthesized then directly transfected into cells or can be generated inside the cell by introducing vectors that express short-hairpin RNA (shRNA) precursors of siRNAs. The process of shRNA into functional siRNA involves cellular RNAi machinery that naturally process genome encoded microRNAs (miRNA) that are responsible for cellular regulation of gene expression by modulating mRNA stability, translation, and chromatin structures [4].

Chemically synthesized siRNA is the simplest format for RNAi. One of the biggest hurdles for achieving effective RNAi with siRNA is that many cells are difficult to transfect. An RNAi experiment is typically considered successful when the target gene expression is reduced by >70%, a threshold not reachable by many types of cells due to their low transfection efficiency. Another drawback of using synthetic siRNA is the limited duration of post-transfection effects, typically with gene silencing activities peaking around 24 hours, and diminishing within 48 hours [5]. Chemical synthesis of siRNA, which is a service Allele Biotech and Orbigen (now merged under the Allele brand) pioneered and still provides, is expensive on a per transfection basis relative to DNA vector based reagents.

shRNA can be introduced by DNA plasmid, linear template, or packaged retroviral/lentiviral vectors. Using any form of DNA construct, except the PCR template format such as Allele’s LineSilence platform, requires creating DNA constructs and sequence verification; a taxing work load if multiple genes need to be studied. However, once the constructs are made, they can be reproduced easily and inexpensively. It is difficult to directly compare the effectiveness of siRNA versus shRNA on a per molecule basis because RNA polymerase III (Pol III) promoters such as U6 or H1 commonly used to express shRNAs can make thousands of copies of shRNA from a single DNA template. However when both siRNA and shRNA are produced the same way, e.g. synthesized chemically, shRNA is reported to be somewhat more effective [6, 7]. For the goals of this research, the most important advantage using shRNA can provide over siRNA is that it can be carried on a lentiviral vector and introduced into a wide variety of cells.

Similar to the comparison between siRNA versus shRNA, it is also difficult to rank the efficiency of shRNA versus miRNA from published data, partly due to different results from different experimental systems. There have been several reports that showed shRNA can cause significant cell toxicity, especially in vivo such as after injection into mouse brain. It was originally reasoned that highly efficient expression from Pol III promoters might overwhelm the cellular machinery that is needed to execute endogenous RNAi functions such as transporting miRNA from the nucleus to the cytoplasm. It was later found out that even using Pol III promoter to create miRNA could still mitigate the toxic effects of shRNA [8]. Since shRNA and miRNA are processed by endonuclease Dicer before being incorporated into RNA induced silencing complex (RISC), the exact identity of siRNAs produced from a given shRNA or miRNA targeting the same region on the mRNA are not known in most of the earlier studies. By designing shRNA and miRNA to give exactly the same processed siRNAs, Boudreau et al. showed that shRNA is actually more potent than miRNA in various systems [9].

New Product/Service of the Week (02-01-10 to 02-07-10): Lentrivirus retrovirus shRNA Packaging Services as low as under $900 per virus.

Currently Trendy Product Line: Camelid antibody group against fluorescent proteins as precipitation tag for co-IP (replacing formerly GFP-Trap line)–GFP-nAb, promotion ongoing now.

1. Fire, A., S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, and C.C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11.
2. Hannon, G.J., RNA interference. Nature, 2002. 418(6894): p. 244-51.
3. McManus, M.T. and P.A. Sharp, Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002. 3(10): p. 737-47.
4. Hutvagner, G. and P.D. Zamore, A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002. 297(5589): p. 2056-60.
5. Rao, D.D., J.S. Vorhies, N. Senzer, and J. Nemunaitis, siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev, 2009. 61(9): p. 746-59.
6. Vlassov, A.V., B. Korba, K. Farrar, S. Mukerjee, A.A. Seyhan, H. Ilves, R.L. Kaspar, D. Leake, S.A. Kazakov, and B.H. Johnston, shRNAs targeting hepatitis C: effects of sequence and structural features, and comparision with siRNA. Oligonucleotides, 2007. 17(2): p. 223-36.
7. Siolas, D., C. Lerner, J. Burchard, W. Ge, P.S. Linsley, P.J. Paddison, G.J. Hannon, and M.A. Cleary, Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol, 2005. 23(2): p. 227-31.
8. McBride, J.L., R.L. Boudreau, S.Q. Harper, P.D. Staber, A.M. Monteys, I. Martins, B.L. Gilmore, H. Burstein, R.W. Peluso, B. Polisky, B.J. Carter, and B.L. Davidson, Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A, 2008. 105(15): p. 5868-73.
9. Boudreau, R.L., A.M. Monteys, and B.L. Davidson, Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. Rna, 2008. 14(9): p. 1834-44.

Tags: , , , , , , , , , , , , , , ,

Wednesday, February 3rd, 2010 RNAi patent landscape, Viruses and cells No Comments