RNAi patent

RNAi Therapy Mediated by Linear DNA Cassettes

RNA interference (RNAi) has been demonstrated to be a powerful tool to silence gene expression. Therapies based on RNAi are being developed in numerous application areas at fast paces. Although in basic research both expressed and synthetic double-stranded RNA molecules are broadly used to induce gene silencing, synthetic small interfering RNAs (siRNAs) are deemed easier to deliver in preclinical and clinical studies. Compared to synthetic siRNAs, DNA cassettes that express small hairpin RNA (shRNA), microRNA (miRNA), or strands of siRNAs have advantages of prolonged effects.

RNAi-expressing DNA cassettes have been incorporated into viral and non-viral vectors for delivery. Viral vectors for RNAi carry the same risks as those for gene therapies, and are currently not the method of choice for human therapies. Non-viral DNA molecules, often in the form of plasmids, can be easily created and reproduced, but their efficacy is hindered by delivery barriers at the tissue, cell, and the nucleus levels. These difficulties are in part due to the plasmids’ large size, presence of antibiotic resistance genes, and immuresponse-generating CpG islands created in bacteria during propagation.

One way to alleviate these difficulties with non-viral DNA vectors for RNAi is to use linear DNA cassettes. Linear DNAs traverse nucleopores efficiently. The DNA molecules can be conveniently produced by PCR reactions without going through production in bacteria, avoiding DNA modifications such as CpG motifs and the need for replication origin or drug-resistance genes. Linear DNA encompassing a promoter, coding region, and poly(A) signals has been used for protein production. Similarly, by incorporating a miRNA cassette into linear transcription unit driven by a Pol II promoter was used to express RNAi for inhibiting HBV (Chattopadhyay et al. (2009). There are now available technologies and commercial services (e.g. Vandalia Research, Inc.) to produce therapeutic grade linear DNA by specialized PCR reactions.

Allele Biotech’s patents on DNA-expressed RNAi provide a platform for highly express shRNA or siRNA from a DNA molecule as short as fewer than 200 basepairs, potentially more suitable for large scale production, and even more efficient transduction trough tissue, cell membrane, and nuclear pores than the large linear cassettes used by Chattopadhyay et al. A set of experiments similar to the cited HBV studies could quickly lead to the validation of a possibly the most effect way yet for RNAi therapeutics.

    New Product of the Week 091310-091910:

LoxP-GFP Human T Cells as a reporter cell line for Cre activity. ABP-RP-TGFPLOX, 1 vial $295.

    Promotion of the Week 091310-091910:

Validated GFP Expression Lentiviral Particles, ABP-RP-TLCGFPS $225.00, $25 off this week only, with an option to receive concentrated virus (10e10 TU/ml, 10 ul volume) at no additional charge! Follow us on Facebook and get the weekly promotion early.

Tags: , , , , , , , , , , , , ,

Thursday, September 16th, 2010 RNAi patent landscape No Comments

Allele Received Broad Patent on DNA-Expressed RNAi in China

Allele Biotechnology & Pharmaceuticals, a San Diego based private company with associate offices and laboratories in China and distribution channels in 30 countries, was granted a major landmark patent in China in the field of RNA interference (RNAi). The patent CN02828345.7, issued on January 20, 2010, covers compositions of DNA molecules that can be transcribed into RNAi-mediating RNA molecules, including the commonly used shRNA and miRNA-like designs. The patent also grants Allele Biotech rights to the process of introducing such DNA molecules into cells. To induce gene silencing by RNA interference, researchers often bring DNA molecules that encode interfering RNAs into cells via plasmid or viral vectors. The rights to use related technologies for the purposes of completely or partially abolishing gene functions through the mechanism of RNAi are granted to Allele Biotech.

Additional claims include methods of studying gene functions using DNA-encoded RNAi agents, or modifying gene expression profile by introducing gene expression-altering DNA molecules that will induce RNAi. The patent further protects the use of DNA-mediated RNAi in creating cell, animal models, and for curing human diseases. According to a Nov 2009 CreditSuisse analysis on the pharmaceutical market in China (and a number of other reports by JP Morgan as well as Morgan Stanley research, etc.), the drug market in China will double by 2015 and the expected revenues for major pharmaceutical companies are in the billion US dollar range each. Many large drug developers have opened research centers in China. For instance, Novartis just announced a 1.25 billion US dollar investment in Chinese R&D centers, making Shanghai one of its top three global research centers. Roche, Pfizer, JNJ, AZN, Bayer, and LLY also have substantial investments in R&D there. Some of their research teams have plans to use the virus-carried shRNA technologies in oncology and other areas, either as screening/validation tools or as therapeutic candidates. Such activities in China are now under the Allele’s recently granted RNAi patent.

The Contract Research Organization (CRO) industry in Shanghai, Suzhou, and Beijing has seen significant growth in the past few years, benefiting from R&D cost cutting in Western countries and the flow of Western-trained researchers back into China. The focus of the CRO business also shifted from chemical synthesis towards one-stop service, including functional screening and animal testing. The clarification of the RNAi patent landscape by the current granting should make the relevant CRO applications of RNAi more mature. It should also provide both the service and the customer companies with a clear route to licensing and/or collaboration.

Most major biomedical research tool and reagent companies have established themselves in the Chinese market and seen fast-growing revenues due to large funding increases to biomedical research in China. For example, Life Technologies, Promega, Millipore, Thermo Scientific, and Sigma-Aldrich all sell RNAi kits that use DNA template for expressing shRNA in mammalian cells, either by viral infection or DNA transfection. In addition, there are many local companies in China that provide reagent kits as well as services.

The Allele patent specifically states claims on reagent kits that contain shRNA-encoding DNA molecules. While being the first in China’s RNAi market, Allele Biotech manufactures in the United States and sells world-wide a set of RNAi kits in the form of retroviral or lentiviral vectors, plasmids, and linear DNA—all of which have superior design for precise shRNA production. As a matter of fact, Allele Biotech helped introduce the RNAi concept through a series of workshops in major universities in China for 3 consecutive years since 2002, at a time when most biologists had just heard of RNAi.

Allele Biotech intends to fully realize the value of this broad patent by providing opportunities to R&D centers, service providers, and reagent sellers to license at reasonable fees, so that this great technology will continue to be widely used and further developed through original research and investment. Allele Biotech intends to set licensing fees on a sliding scale in several aspects:
–the closer a drug gets to market, the higher the fees;
–the smaller the company, the lower the fees;
–the earlier the license is negotiated within an industry sector, the lower the fees.
Allele’s attorneys in China have already been contacted to start drafting plans for licensing deals and patent rights execution. “While stressing wide access, limiting the number of licenses in China is not completely out of the question. In general we want to grant all-application, non-exclusive, low-cost licenses to many companies to keep the costs affordable.” says Dr. Jiwu Wang, Allele’s CEO and the inventor of the patents. “However, if a dominant player in a particular application area is more interested in some exclusivity, a co-exclusive or conditional exclusive license may be negotiated”.

A brief background about RNAi patents:
–The original Fire and Mello patent claimed double-stranded RNAs longer than 25, eliminating use in most mammalian cells.
–The few other RNAi patents granted in the US, Europe, Japan and other markets so far mostly concern chemically synthesized siRNAs.
–The Tuschl I and II patents, with the latter being frequently mentioned in the news because it has generated hundreds of millions of dollars in licensing fees, concern siRNAs suitable for mammalian cells, but they are either chemically synthesized or processed in cell lysate.
–The Allele patent family includes 3 issued US patents on using RNA polymerase III promoter (e.g., commonly used U6 promoter) for generating RNAi. The core of the Allele patents describes making siRNAs that can be of 19 to 25 basepairs long, which are not covered by the Fire and Mello patent. Further, these transcribed siRNA are not chemically synthesized; therefore, they do not conflict with the Tuschl patents. The Allele patent in China has an even broader field of granted rights, covering any DNA-based gene silencing using double-stranded RNA as intermediates.

New Product of the week 020810-021410: Ready-to-use retroviral particles expressing mWasabi, the brightest GFP, ABP-SC-VIREMW1 or 5.

Promotion of the week 020810-021410: Ready-to-use lentiviral particles expressing hNanog and hLin28, ABP-SC-LVINANO and ABP-SC-LVILN28,high titer, 50% off list price, promocode nglnkrm0210.

Tags: , , , , , , , , , , ,

Wednesday, February 10th, 2010 Open Forum, RNAi patent landscape 4 Comments