stem cells

American CryoStem Corporation (OTCQB:CRYO), announced the launch of its newest adult stem cell and adipose tissue collection center in Bellevue, Washington

A public company doing business of preparing and providing adipose (fat) tissue and adipose derived adult stem cells, American CryoStem Corporation (OTCQB:CRYO), announced the launch of its newest adult stem cell and adipose tissue collection center in Bellevue, Washington. Dr. Fredric Stern will officially launch the new Stern Center Stem Cell Collection Service as the first to provide Adult Stem Cell and Tissue Banking services to the general public in the Seattle, Washington area.

“Having successfully worked with American CryoStem in the past we are truly excited about the official launch of these adipose tissue based services to the general public in Washington. I look forward to working with American CryoStem on educating my patients about the Regenerative Medicine benefits of “bio-banking” and the latest fat transfer cosmetic services now available at the center. I chose to affiliate my practice with American Cryostem because of their thorough scientific approach to stem cell banking and strict adherence to aseptic technique and FDA guidelines,” said Dr. Fredric Stern, the founder of The Stern Center and a plastic surgeon.

John S. Arnone, CEO said, according to a company news release, “We are excited to have a surgeon with Dr. Stern’s abilities and reputation associated with American CryoStem in the Seattle, WA area and look forward to a productive relationship with the entire Stern Center team. We remain committed to our “Gold Standard” clinical laboratory processing and storage reputation and strive to provide the best physician and patient services in the U.S. The newest stem cell collection center in our network represents our commitment to associate with leading physicians in the Regenerative Medicine Industry.”

Mesenchymal stem cells (MSCs) are typically the products of adipose tissue-isolated stem cells for regenerative medicine or, in this case cosmetic surgeries. The mesenchymal stem cells can also be isolated from bone marrow or embryos. They secret hormones once introduced into human bodies and help balance cytokines in the blood. It is reported that MSCs help reduce several disease symptoms and, in some countries, are used as “youth fountains” in anti-aging treatment. MSCs can be produced fairly easily, in our hands at least, from induced pluripotent stem cells (iPSCs). iPSCs, like embryonic stem cells, can be expanded indefinitely, differentiated into MSCs and all other cell types, and are being tested in various cell therapies including those that are mediated through the MSC stage.

Tags: , , , ,

Wednesday, December 12th, 2012 iPSCs and other stem cells, Open Forum No Comments

Companies in Stem Cell Therapies

Geron, spinal cord injury

ViaCyte, diabetes, US$10.1 million from CIRM

Blubird Bio, beta-thalassemia, US$9.3 million from CIRM

StemCells, Alzheimer’s US$20 million from CIRM; spinal cord injury US$20 million from CIRM, stocks rise 148% this year.

Osiris, graft-vs.-host disease (GvHD) in children, approved by Canadian regulator Health Canada

Pluristem Therapeutics, aplastic bone marrow, IPO $30 million, shares up 44%.

Cardio3 BioSciences therapy, heart failure, Phase III in Belgium permitted.

TiGenix, cartilage repair in the knee, commercial production; autoimmune, Crohn’s disease Phase III; quarterly revenue up 152% as reported in Oct, 2012.

Advanced Cell Technology, degenerative eye condition, advancing clinical trials in the US and EU.

New Products to be released at next month’s ASCB annual conference in San Francisco: human mRNA-iPS cells, iPSCs with fluorescent markers, neural pregenitors derived from mRNA-iPSCs.

Tags: , , , , , , , , , , , ,

Friday, November 23rd, 2012 iPSCs and other stem cells, Open Forum No Comments

Allele Biotechnology Announces New advance in production of human stem cells

This week in the journal Scientific Reports (Nature Publishing Group) scientists from Allele Biotechnology describe an important advance in the generation of stem cells capable of producing all the different tissues of the human body. In an article entitled “Feeder-Free Derivation of Human Induced Pluripotent Stem Cells with Messenger RNA,” Allele’s scientists present the fastest and safest method yet for converting ordinary human skin cells into “induced pluripotent stem cells” (iPSCs).

The scientific efforts were led by Dr. Luigi Warren, whose pioneering work on “footprint-free” reprogramming using messenger RNA was the foundation for Allele’s breakthrough. Through the united efforts of Dr. Warren and the scientists at Allele Biotechnology, his technique was re-engineered to increase cell conversion efficiency and eliminate any use of potentially unsafe reagents, while substantially reducing the time and effort needed to make stem cells. Dr. Warren believes that because of its advantages this technology “should become the method of choice for iPSC cell banking.”

According to Dr. Jiwu Wang, corresponding author on the paper and CEO of Allele Biotechnology, “This advance in stem cell derivation will enable both fundamental scientific research and clinical applications which has been the mission of Allele Biotechnology from its inception.”

Allele Biotechnology and Pharmaceuticals Inc. is a San Diego-based biotechnology company that was established in 1999 by Dr. Jiwu Wang and colleagues. A research based company specializing in the fields of RNAi, stem cells, viral expression, camelid antibodies and fluorescent proteins; Allele Biotechnology has always striven to offer products and services at the cutting edge of research.

Allele Biotechnology and Pharmaceuticals Inc.
Jiwu Wang, Ph.D., 858-587-6645 Ext 3
President and CEO
fax: 858-587-6692
Press release by BusinessWire. Also see Yahoo!News, Reuters, The Herald, etc.

Tags: , , , , , , , , , , , , ,

Cord Banking and iPS Cells

Umbilical Cord Banking (UCB) has been a popular discussion topic in the United States since the first Cord Bank was established in New York in 1992. Since the first cord blood transplantation in 1988, there have been over 780,000 UCB donations to private banks and 400,000 UCB donations to public blood banks worldwide. There has been such a great number of donations because UCB is full of hematopoietic progenitor cells, which makes it a more desirable solution to genetic, metabolic and immune disorders, over bone marrow and blood. Because of the nature of UCB, the recipient does not need to be an immunological match, there is a lower rate of infection and it is much easier to acquire than bone marrow, making it the ideal form of treatment for many patients and practitioners.

Over twenty years later, a new technology is emerging that could provide some clarity to the “to donate or not to donate” debate: induced pluripotent stem cells (iPSC). Derived from adult cells, iPSCs have the potential to be used like UCB or reprogrammed into specific tissue like myocytes. This potential opens up banking to countless individuals born before 1992, who never had an option to bank their UCB. With this unbounded potential, should iPSCs be banked liked UCB? Supporters argue that there has been enough evidence thus far to start a bank, however, most people seem to agree that too much is unknown about iPSCs and their use in humans. With that, most are in agreement that iPSC research is absolutely needed so banking can become a reality in the future.

For now iPSCs will remain in the testing and research phase, however, based on current research, iPSCs have the potential to enhance Cord Blood that has already been banked, perhaps providing some relief to public banks in the future (Broxmeyer, 2010). Though the potential of iPSCs is endless, more work has to be done before they are placed in humans and considered a viable banking system.

Tags: , , , ,

Wednesday, August 1st, 2012 iPSCs and other stem cells 1 Comment

Monitoring the Undifferentiated Stage of Stem Cells—the Pluripotency Markers

Human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells promise to serve as an unlimited source for transplantation or tissue-specific differentiation. However, obtaining and maintaining stem cells are very difficult tasks for multiple reasons. For instance, most stem cell lines tend to spontaneously differentiate in culture, and even if the cells form stem cell-like colonies, they may be of a heterogeneous population.

To identify pluripotency of stem cells, expression of stem cell-specific marker genes (i.e. Oct-3/4, Sox2, Nanog, Rex-1) is monitored by RT-PCR. Alkaline phosphatase activity and methylation profiles of promoters of pluripotency-relevant genes are often analyzed as well. Compared to murine cells, it is noticeably more difficult to obtain human iPSCs, of which stem cell-like colonies sometimes turn out not to be pluripotent cells. We highly recommend testing iPSCs, especially human iPSCs, with antibodies against stage-specific embryonic antigens such as SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81.

However, all of these methods require cell destruction or fixation for analysis, therefore, are inconvenient and costly. Furthermore, many studies using ES or iPS cells involve differentiation of stem cells into different lineages, a method for observing live cells to know their undifferentiation/differentiation stages would be very helpful. There have been a number of publications using murine Oct-4, Nanog, and Rex-1 promoter driven fluorescent proteins as markers for pluripotency tests [1-3]. Allele Biotech provides, under its iPS product line, packaged and validated lentiviral particles that would insert these 3 promoter-FP reporters into the stem cells. Although currently these promoters are of mouse sequences, their use in human stem cells have been reported.

    New product of the week 01-25-10 to 01-31-10:

All-In-One-Vector: Human OSKM Lentiviral Paticles, with Oct-4, Sox-2, Klf, and c-Myc all expressed from a single virus, ready-to-use.

    • Promotion of the week:

human iPS cell detection primer set, the same as the landmark Yamanaka paper [4] on creating human iPS for the first time.

1. Da Yong WU, Zhen YAO (2005). Isolation and characterization of the murine Nanog gene promoter. Cell Research, 15 (5): 317–324.
2. Rachel Eiges, Maya (2001). Establishment of human embryonic stem cell?transfected clones carrying a marker for undifferentiated cell. Current Biology 11: 514–518.
3. Guangjin Pan, Jun Li, Yali Zhou, Hui Zheng, and Duanqing pei (2006). A negative feedback loop of transcription factors that control stem cell pluripotency and self?renewal. ASEB Journal 20: E1094? E1102
4. Takahashi et al, Induction of Pluripotent Stem Cell from Adult Human Fibroblasts by Defined Factors (2007). Cell 131, 861-872

Tags: , , , , , , , , , , ,

Thursday, January 28th, 2010 iPSCs and other stem cells No Comments