human fibroblasts

Allele Biotechnology Announces New advance in production of human stem cells

This week in the journal Scientific Reports (Nature Publishing Group) scientists from Allele Biotechnology describe an important advance in the generation of stem cells capable of producing all the different tissues of the human body. In an article entitled “Feeder-Free Derivation of Human Induced Pluripotent Stem Cells with Messenger RNA,” Allele’s scientists present the fastest and safest method yet for converting ordinary human skin cells into “induced pluripotent stem cells” (iPSCs).

The scientific efforts were led by Dr. Luigi Warren, whose pioneering work on “footprint-free” reprogramming using messenger RNA was the foundation for Allele’s breakthrough. Through the united efforts of Dr. Warren and the scientists at Allele Biotechnology, his technique was re-engineered to increase cell conversion efficiency and eliminate any use of potentially unsafe reagents, while substantially reducing the time and effort needed to make stem cells. Dr. Warren believes that because of its advantages this technology “should become the method of choice for iPSC cell banking.”

According to Dr. Jiwu Wang, corresponding author on the paper and CEO of Allele Biotechnology, “This advance in stem cell derivation will enable both fundamental scientific research and clinical applications which has been the mission of Allele Biotechnology from its inception.”

Allele Biotechnology and Pharmaceuticals Inc. is a San Diego-based biotechnology company that was established in 1999 by Dr. Jiwu Wang and colleagues. A research based company specializing in the fields of RNAi, stem cells, viral expression, camelid antibodies and fluorescent proteins; Allele Biotechnology has always striven to offer products and services at the cutting edge of research.

Allele Biotechnology and Pharmaceuticals Inc.
Jiwu Wang, Ph.D., 858-587-6645 Ext 3
President and CEO
fax: 858-587-6692
Press release by BusinessWire. Also see Yahoo!News, Reuters, The Herald, etc.

Tags: , , , , , , , , , , , , ,

Mouse and human cells can both be reprogrammed with one cluster of specific miRNAs

The miRNA302/367 cluster was first found to be a direct target for the stem cell-specific factors Oct4 and Sox2, recently Anokye-Danso et al. showed that by overexpressing this miRNA cluster mouse and human cells can be reprogrammed without the OSKM factors. Moreover, according to the publication in Cell Stem Cell, miRNA-mediated reprogramming is “up to two orders of magnitude” more efficient than OSKM overexpression (but the authors used individual Oct4, Sox2, Klf4, and c-Myc lentiviruses, instead of a polycistronic virus such as Allele’s lenti-iPS-4-in-1).

To reprogram mouse embryonic fibroblasts (MEFs), suppression of chromatin remodeling factor Hdac2 is necessary when using miRNA for iPSC isolation. Surprisingly, the Hdac2 level is low in human fibroblasts, which do not need an Hdac inhibitor such as valproic acid (VPA) for reprogramming. Oct4-GFP positive cells (stem cells) are observed only 7 days post infecting MEFs with the miRNA302/367, and hundreds colonies appear per 10 thousand cells. When using human fibroblasts, iPSCs form at 18 to 26 days, at an efficiency of approximately 10%, which is significantly higher than using individual OSKM viruses.

The high efficiency from using miRNA for reprogramming is likely due to the fact that miRNAs can target hundreds of mRNAs, compared to providing one mRNA at a time. Although this study concluded that the miRNA302/367 expressing lentivirus was eventually silenced post stem cell induction, emphasis must still be placed on finding a non-integrating method to deliver this miRNA cluster.

New Product of the Week: Chemically synthesized miRNAs by your own design, email for details.

Promotion of the week: Promotion of the week: save 10% on AlleleBalanced Luciferase Assay Kits. Email the code Luc10 to to redeem this offer.

Tags: , , , , , , , , , ,

Wednesday, May 25th, 2011 iPSCs and other stem cells No Comments

Protocols for Using Human Fibroblasts Expressing Human bFGF as Feeder Cells for iPSCs

New Product of the Week: Anti-GFP Polyclonal Antibody 100ug ABP-PAB-PAGFP10 $175.00.

Allele Biotech has introduced the highly efficient GFP-Trap for GFP fusion protein pull-down, and a monoclonal anti-GFP antibody for detecting GFP-fusion proteins after Immunoprecipitation with GFP-Trap. Just launched this week, the anti-GFP polyclonal antibodies provide an alternative method for analyzing the isolated proteins.

Pre-announcement: Allele Biotech will launch a FAQ and a User Forum online where you can also find common protocols in focus areas and exchange ideas with us or others.

1. Thaw one vial of irradiated feeder cells by swirling gently in 37oC water bath until all of the contents are thawed. One vial of 2×10^6 cells is sufficient to prepare two10-cm dishes, or two 6-well or 12-well plates (about 3-4×10^4/cm2).
2. Spray vial with 70% ethanol and wipe dry before placing in tissue culture hood.
3. Gently add 1 ml prewarmed feeder cell medium (alphaMEM or DMEM/F12 with 10% FBS), mix with contents of cryovial and transfer into 15-ml conical tube containing 4 ml prewarmed feeder cell medium.
4. Centrifuge the cells at 200g at room temperature for 5 min and discard the supernatant.
5. Resuspend the feeder cells in 12 ml feeder cell medium. If using a 6-well plate: add 1 ml of feeder cell suspension to each well of the 6-well plate containing 1 ml fresh feeder cell media per well. If using a 10-cm tissue culture dish: add 6 ml of feeder cell suspension to 10-cm tissue culture dish containing 6 ml fresh feeder cell media. If using a 12-well plate: add 0.5 ml feeder cell suspension to each well of 12-well plate containing 1 ml fresh feeder cell media per well. Gently shake the dish left/right and up/down 10-20 times without swirling the plate to evenly distribute the cells across the plate.
6. Incubate the cells in 37 1C, 5% CO2, overnight.
CRITICAL STEP When moving the feeder cell plates from the tissue culture hood to incubator, do not swirl the medium, as this tends to cause the cells to accumulate in the center. Immediately after placing the plates in the incubator, slide the plates forward and backward (2–3 cm) two times, then left to right (2–3 cm) two times to ensure equal distribution of the cells. Use within 5–7 days.
7. Split stem cells (~2.5 x 10^5 to 5 x 10^5 cells, or ~10% confluence) into plate with feeder cells: aspirate medium from ESC or iPSC, wash with PBS and add 0.5 ml of 0.05% trypsin. Incubate at 37oC, 5% CO2, for 5 min.
8. Inactivate trypsin with 3 ml stem cell medium (e.g. DMEM + 20% knockout serum replacement), and collect cell clumps in 15-ml conical tube avoiding making single cell suspension because ESC tends to die in single cell form.
9. Centrifuge at 200g at room temperature for 4 min.
10. Aspirate feeder medium from feeder plates (cells incubated in Step 6), rinse with one ml of stem cell medium and add 5 ml of stem cell medium and return to incubator.
11. Aspirate and discard supernatant from the conical tube in Step 8, resuspend cells in 5 ml stem cell medium, gently dispense the cell pellet three times, add to feeder cell wells or dishes.
12. Incubate stem cells grown on feeder cells at 37oC, 5% CO2, for 48 h.
13. Aspirate medium and replace with stem cell medium every day; if iPSC colony number is low, replace medium every two days.

Tags: , , , , , , , , , , ,

Wednesday, October 14th, 2009 iPSCs and other stem cells, Open Forum No Comments

FAQ About Feeder Cells for Stem Cells –Part One

The cost of preparing feeder cells for induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) is mainly due to 1. serum and media, 2. labor for growing and treating cells, and 3. expenses for freezing media and vials. Ready-to-use feeder cells saves one important labor-intensive step of iPSC generation, it should be an important help for iPSC and stem cell researchers. We know that most of our colleagues are tired of preparing fresh early passages of MEFs and treating them with expensive mitomycin C or finding an irradiator to pre-treat the MEFs. A lot of iPSC researchers lost iPS stem cells due to the lack of patience in handling MEF feeders. The offering of Allele’s feeder cell product line is really an easy solution and convenience to iPSC researchers.

Question 1: There are companies offering drug-resistant feeder cells such as MEF cells expressing neo-, puro-, or hygromycin-resistance genes. Is it important to have such drug-resistance genes when choosing feeder cells?

Adding drug resistant markers to these cells should not be necessary because iPSCs grown on feeder cells are usually not cultured in antibiotics-containing medium. The feeder cells will not be selected by drug resistance nor will they contaminate iPS cells since they can not propagate after irradiation. However, for those who do need to use drug selection for any reason, we will provide drug-resistant feeder cells upon request.

Question 2: There are publications showing the use of cells lines as feeder cells instead of primary fibroblasts, e.g. SL10, MRC-5, STO. Are there any advantages of using these cell lines?

Not really. Handling primary cells requires certain amount of experience and may be tedious; using cell lines, on the other hand, would be easier for preparing feeder cells. We provide feeder cells from immortalized early passage human foreskin fibroblasts at prices often lower than those from cell lines.

Question 3: Should I choose fluorescent protein expressing feeder cells for easy separation from iPSCs?

You do not need to include fluorescent protein in feeder cells, as feeder cells are quite different in morphology from iPS cells or ES cells. In fact, many labs use iPS factors that are co-expressed with fluorescent markers, in which cases feeder cell expressed fluorescent proteins will confuse the readout.

Question 4: What are the main advantages of using bFGF-expressing feeder cells?

Our bFGF-feeder cells not only eliminate the needs for added recombinant bFGF to stem cell cultures, but also form very nice cell lawn to serve iPSC colony formation because of their strictly controlled passage and growth conditions. We have used these cells without coating dishes with gelatin and obtained nice iPSC colonies.

Preview: Next Part of FAQ on Feeder Cells: choosing mouse or human fibroblasts, selecting iPSC colonies…

Announcement: An audience-orientated User Forum will be added to Allele Biotech webpages so that people can freely discuss or review products and technologies. A distilled version of discussions will be presented in a related but separate FAQ section, which will also include all Allele eNewsletters sent to our contacts about every quarter. Look for the links on in coming weeks.

Tags: , , , , , , , , , , , , , , , ,

Wednesday, October 7th, 2009 iPSCs and other stem cells No Comments